The October 2022 issue of IEEE Spectrum is here!

Close bar
Belle was a winning chess-playing computer developed at Bell Labs in the early 1970s.
Check and Mate: Belle was a winning chess-playing computer developed at Bell Labs in the early 1970s.
Photo: Peter Adams

Chess is a complicated game. It’s a game of strategy between two opponents, but with no hidden information and all of the potential moves known by both players at the outset. With each turn, players communicate their intent and try to anticipate the possible countermoves. The ability to envision several moves in advance is a recipe for victory, and one that mathematicians and logicians have long found intriguing.

Despite some early mechanical chess-playing machines—and at least one chess-playing hoax—mechanized chess play remained hypothetical until the advent of digital computing. While working on his Ph.D. in the early 1940s, the German computer pioneer Konrad Zuse used computer chess as an example for the high-level programming language he was developing, called Plankalkül. Due to World War II, however, his work wasn’t published until 1972. With Zuse’s work unknown to engineers in Britain and the United States, Norbert Wiener, Alan Turing, and notably Claude Shannon (with his 1950 paper “Programming a Computer for Playing Chess” [PDF]) paved the way for thinking about computer chess.

Keep Reading ↓Show less

This article is for IEEE members only. Join IEEE to access our full archive.

Join the world’s largest professional organization devoted to engineering and applied sciences and get access to all of Spectrum’s articles, podcasts, and special reports. Learn more →

If you're already an IEEE member, please sign in to continue reading.

Membership includes:

  • Get unlimited access to IEEE Spectrum content
  • Follow your favorite topics to create a personalized feed of IEEE Spectrum content
  • Save Spectrum articles to read later
  • Network with other technology professionals
  • Establish a professional profile
  • Create a group to share and collaborate on projects
  • Discover IEEE events and activities
  • Join and participate in discussions

The Godfather of South Korea’s Chip Industry

How Kim Choong-Ki helped the nation become a semiconductor superpower

15 min read
A man in a dark suit, bald with some grey hair, leans against a shiny blue wall, in which he is reflected.

Kim Choong-Ki, now an emeritus professor at Korea Advanced Institute of Science and Technology, was the first professor in South Korea to systematically teach semiconductor engineering.

Korea Academy of Science and Technology
DarkBlue2

They were called “Kim’s Mafia.” Kim Choong-Ki himself wouldn’t have put it that way. But it was true what semiconductor engineers in South Korea whispered about his former students: They were everywhere.

Starting in the mid-1980s, as chip manufacturing in the country accelerated, engineers who had studied under Kim at Korea Advanced Institute of Science and Technology (KAIST) assumed top posts in the industry as well as coveted positions teaching or researching semiconductors at universities and government institutes. By the beginning of the 21st century, South Korea had become a dominant power in the global semiconductor market, meeting more than 60 percent of international demand for memory chips alone. Around the world, many of Kim’s protégés were lauded for their brilliant success in transforming the economy of a nation that had just started assembling radio sets in 1959 and was fabricating outdated memory chips in the early ’80s.

Keep Reading ↓Show less
{"imageShortcodeIds":[]}