The July 2022 issue of IEEE Spectrum is here!

Close bar

Robot Could Operate a Docking Station Inside the Gut

Magnetic drug capsule docks with implant to deliver insulin

3 min read
A diagram shows the concept of a robotic insulin delivery system that would be implanted in the gut.

The robotic drug delivery system includes an implant near the intestines and magnetic capsules that would resupply the implant with medicine.

The BioRobotics Institute, Scuola Superiore Sant'Anna

Picture, if you will, a cargo rocket launching into space and docking on the International Space Station. The rocket maneuvers up to the station and latches on with an airtight seal so that supplies can be transferred. Now imagine a miniaturized version of that process happening inside your body.

Researchers today announced that they have built a robotic system capable of this kind of supply drop, and which functions entirely inside the gut. The system involves an insulin delivery robot that is surgically implanted in the abdomen, and swallowable magnetic capsules that resupply the robot with insulin.

The robot's developers, based in Italy, tested their system in three diabetic pigs. The system successfully controlled the pigs' blood glucose levels for several hours, according to results published today in the journal Science Robotics.

"Maybe it's scary to think about a docking station inside the body, but it worked," says Arianna Menciassi, an author of the paper and a professor of biomedical robotics and bioengineering at Sant'Anna School of Advanced Studies in Pisa, Italy.

In her team's system, a device the size of a flip phone is surgically implanted along the abdominal wall interfaced with the small intestine. The device delivers insulin into fluid in that space. When the implant's reservoir runs low on medication, a magnetic, insulin-filled capsule shuttles in to refill it.

Here's how the refill procedure would theoretically work in humans: The patient swallows the capsule just like a pill, and it moves through the digestive system naturally until it reaches a section of the small intestine where the implant has been placed. Using magnetic fields, the implant draws the capsule toward it, rotates it, and docks it in the correct position. The implant then punches the capsule with a retractable needle and pumps the insulin into its reservoir. The needle must also punch through a thin layer of intestinal tissue to reach the capsule.

In all, the implant contains four actuators that control the docking, needle punching, reservoir volume and aspiration, and pump. The motor responsible for docking rotates a magnet to maneuver the capsule into place. The design was inspired by industrial clamping systems and pipe-inspecting robots, the authors say.

After the insulin is delivered, the implant releases the capsule, allowing it to continue naturally through the digestive tract to be excreted from the body. The magnetic fields that control docking and release of the capsule are controlled wirelessly by an external programming device, and can be turned on or off. The implant's battery is wirelessly charged by an external device.

This kind of delivery system could prove useful to people with type 1 diabetes, especially those who must inject insulin into their bodies multiple times a day.

This kind of delivery system could prove useful to people with type 1 diabetes, especially those who must inject insulin into their bodies multiple times a day. Insulin pumps are available commercially, but these require external hardware that deliver the drug through a tube or needle that penetrates the body. Implantable insulin pumps are also available, but those devices have to be refilled by a tube that protrudes from the body, inviting bacterial infections; those systems have not proven popular.

A fully implantable system refilled by a pill would eliminate the need for protruding tubes and hardware, says Menciassi. Such a system could prove useful in delivering drugs for other diseases too, such as chemotherapy to people with ovarian, pancreatic, gastric, and colorectal cancers, the authors report.

As a next step, the authors are working on sealing the implanted device more robustly. "We observed in some pigs that [bodily] fluids are entering inside the robot," says Menciassi. Some of the leaks are likely occurring during docking when the needle comes out of the implant, she says. The leaks did not occur when the team previously tested the device in water, but the human body, she notes, is much more complex.

The Conversation (1)
Joe Dun21 Aug, 2021
INDV

Decades ago, there was an implantable insulin pump. It was refilled with a needle inserted from outside the body. I really don't see why something that refills from a pill that must dock with the needle on the internal pump is an advantage for insulin delivery. One would also think that the nature of the digestive track would greatly increase the risk of bacterial infection. Perhaps this idea is a solution hunting for a problem to solve.

A photo showing machinery in a lab

Foundries such as the Edinburgh Genome Foundry assemble fragments of synthetic DNA and send them to labs for testing in cells.

Edinburgh Genome Foundry, University of Edinburgh

In the next decade, medical science may finally advance cures for some of the most complex diseases that plague humanity. Many diseases are caused by mutations in the human genome, which can either be inherited from our parents (such as in cystic fibrosis), or acquired during life, such as most types of cancer. For some of these conditions, medical researchers have identified the exact mutations that lead to disease; but in many more, they're still seeking answers. And without understanding the cause of a problem, it's pretty tough to find a cure.

We believe that a key enabling technology in this quest is a computer-aided design (CAD) program for genome editing, which our organization is launching this week at the Genome Project-write (GP-write) conference.

With this CAD program, medical researchers will be able to quickly design hundreds of different genomes with any combination of mutations and send the genetic code to a company that manufactures strings of DNA. Those fragments of synthesized DNA can then be sent to a foundry for assembly, and finally to a lab where the designed genomes can be tested in cells. Based on how the cells grow, researchers can use the CAD program to iterate with a new batch of redesigned genomes, sharing data for collaborative efforts. Enabling fast redesign of thousands of variants can only be achieved through automation; at that scale, researchers just might identify the combinations of mutations that are causing genetic diseases. This is the first critical R&D step toward finding cures.

Keep Reading ↓Show less