Robot Could Operate a Docking Station Inside the Gut

Magnetic drug capsule docks with implant to deliver insulin

3 min read
A diagram shows the concept of a robotic insulin delivery system that would be implanted in the gut.

The robotic drug delivery system includes an implant near the intestines and magnetic capsules that would resupply the implant with medicine.

The BioRobotics Institute, Scuola Superiore Sant'Anna

Picture, if you will, a cargo rocket launching into space and docking on the International Space Station. The rocket maneuvers up to the station and latches on with an airtight seal so that supplies can be transferred. Now imagine a miniaturized version of that process happening inside your body.

Researchers today announced that they have built a robotic system capable of this kind of supply drop, and which functions entirely inside the gut. The system involves an insulin delivery robot that is surgically implanted in the abdomen, and swallowable magnetic capsules that resupply the robot with insulin.

The robot's developers, based in Italy, tested their system in three diabetic pigs. The system successfully controlled the pigs' blood glucose levels for several hours, according to results published today in the journal Science Robotics.

"Maybe it's scary to think about a docking station inside the body, but it worked," says Arianna Menciassi, an author of the paper and a professor of biomedical robotics and bioengineering at Sant'Anna School of Advanced Studies in Pisa, Italy.

In her team's system, a device the size of a flip phone is surgically implanted along the abdominal wall interfaced with the small intestine. The device delivers insulin into fluid in that space. When the implant's reservoir runs low on medication, a magnetic, insulin-filled capsule shuttles in to refill it.

Here's how the refill procedure would theoretically work in humans: The patient swallows the capsule just like a pill, and it moves through the digestive system naturally until it reaches a section of the small intestine where the implant has been placed. Using magnetic fields, the implant draws the capsule toward it, rotates it, and docks it in the correct position. The implant then punches the capsule with a retractable needle and pumps the insulin into its reservoir. The needle must also punch through a thin layer of intestinal tissue to reach the capsule.

In all, the implant contains four actuators that control the docking, needle punching, reservoir volume and aspiration, and pump. The motor responsible for docking rotates a magnet to maneuver the capsule into place. The design was inspired by industrial clamping systems and pipe-inspecting robots, the authors say.

After the insulin is delivered, the implant releases the capsule, allowing it to continue naturally through the digestive tract to be excreted from the body. The magnetic fields that control docking and release of the capsule are controlled wirelessly by an external programming device, and can be turned on or off. The implant's battery is wirelessly charged by an external device.

This kind of delivery system could prove useful to people with type 1 diabetes, especially those who must inject insulin into their bodies multiple times a day.

This kind of delivery system could prove useful to people with type 1 diabetes, especially those who must inject insulin into their bodies multiple times a day. Insulin pumps are available commercially, but these require external hardware that deliver the drug through a tube or needle that penetrates the body. Implantable insulin pumps are also available, but those devices have to be refilled by a tube that protrudes from the body, inviting bacterial infections; those systems have not proven popular.

A fully implantable system refilled by a pill would eliminate the need for protruding tubes and hardware, says Menciassi. Such a system could prove useful in delivering drugs for other diseases too, such as chemotherapy to people with ovarian, pancreatic, gastric, and colorectal cancers, the authors report.

As a next step, the authors are working on sealing the implanted device more robustly. "We observed in some pigs that [bodily] fluids are entering inside the robot," says Menciassi. Some of the leaks are likely occurring during docking when the needle comes out of the implant, she says. The leaks did not occur when the team previously tested the device in water, but the human body, she notes, is much more complex.

The Conversation (1)
Joe Dun21 Aug, 2021

Decades ago, there was an implantable insulin pump. It was refilled with a needle inserted from outside the body. I really don't see why something that refills from a pill that must dock with the needle on the internal pump is an advantage for insulin delivery. One would also think that the nature of the digestive track would greatly increase the risk of bacterial infection. Perhaps this idea is a solution hunting for a problem to solve.

Restoring Hearing With Beams of Light

Gene therapy and optoelectronics could radically upgrade hearing for millions of people

13 min read
A computer graphic shows a gray structure that’s curled like a snail’s shell. A big purple line runs through it. Many clusters of smaller red lines are scattered throughout the curled structure.

Human hearing depends on the cochlea, a snail-shaped structure in the inner ear. A new kind of cochlear implant for people with disabling hearing loss would use beams of light to stimulate the cochlear nerve.

Lakshay Khurana and Daniel Keppeler

There’s a popular misconception that cochlear implants restore natural hearing. In fact, these marvels of engineering give people a new kind of “electric hearing” that they must learn how to use.

Natural hearing results from vibrations hitting tiny structures called hair cells within the cochlea in the inner ear. A cochlear implant bypasses the damaged or dysfunctional parts of the ear and uses electrodes to directly stimulate the cochlear nerve, which sends signals to the brain. When my hearing-impaired patients have their cochlear implants turned on for the first time, they often report that voices sound flat and robotic and that background noises blur together and drown out voices. Although users can have many sessions with technicians to “tune” and adjust their implants’ settings to make sounds more pleasant and helpful, there’s a limit to what can be achieved with today’s technology.

Keep Reading ↓Show less