IEEE Plots a Path for Wide Bandgap Semiconductors Used in the Power Industry

A new road map offers a strategic look at the technology, which promises smaller, faster, and more reliable devices

2 min read
Illustration icons relating to semicondoctor production.
Illustration: Shutterstock

THE INSTITUTE There’s a lot of excitement in the power industry about devices made with wide bandgap (WBG) semiconductors such as silicon carbide (SiC) and gallium nitride (GaN).

The materials’ bandgaps—the energy difference between insulating and conducting states—are significantly greater than that of silicon. As a result, WBG power devices use less energy, can handle higher voltages, can operate at higher temperatures and frequencies, and can produce more reliable forms of electricity from renewable energy. But their technology is also fairly new, and the devices cost more than silicon-based ones, which have a proven track record.

To encourage the use of WBG technology, the IEEE Power Electronics Society (PELS) recently released the International Technology Roadmap for Wide Bandgap Power Semiconductors (ITRW).

“The road map is a strategic look at the long-term landscape of WBG, its future, what the trends are, and what the possibilities are,” says IEEE Fellow Braham Ferreira, chair of the ITRW steering committee. “The purpose of the document is to facilitate an acceleration in the R&D process to fulfill the potential this new technology has.”

The road map committee is divided into working groups that focus on four areas: substrates and devices, modules and packaging, GaN systems and applications, and SiC systems and applications. Experts from around the world are participating, including materials scientists and engineers, device specialists and researchers, policymakers, and representatives from industry and academia.

The road map identifies key trends, design challenges, and potential applications as well as a preview of future applications.

“We could not give marching orders for industry on the production and development of these devices,” Ferreira says. “By consensus and agreement, we identified what the potential new applications could be, and gave direction for investment in long-term R&D.”

BENEFITS APLENTY

There are several reasons for using WBG semiconductors for power electronics and other applications, according to the ITRW executive summary. SiC and GaN devices are becoming more affordable and widely available. They also offer performance that can’t be achieved with silicon.

The new generation of WBG semiconductor devices made from SiC and GaN power converters have the potential to switch 100 to 1,000 times faster than their silicon counterparts.

They also can save a lot of energy, Ferreira says: “With a typical silicon converter, you get about 95 percent efficiency. But using a WBG converter, the efficiency is closer to 99 percent.”

The road map summary lists the markets that could benefit most from the adoption of WBG technology, including ones for photovoltaic converters, hybrid and pure electric automotive drivetrains, and data centers.

The road map authors also foresee clear benefits for the technology in radiation-hardened electronic equipment used in space and other places where a lot of radiation is present, Ferreira says.

Markets that can benefit from WBG’s smaller converters and reduced losses and noise are power supplies for computers, laptops, televisions, and electric vehicles.

WHAT’S INSIDE

The road map identifies short- (5 years), mid- (5 to 15 years) and long-term time frames for commercialization. Short-term indicators are given for existing products and devices. The mid-term section explains what it would take for specific technologies to turn a profit. Longer-term trends highlight research that could lead to new devices.

Several case studies are included. One looks at integrated switching cells for modular wide-bandgap conversion. Another considers high-voltage packages for silicon carbide MOSFETs.

PELS members can download the road map for free. The cost is US $50 for other IEEE members and $250 for nonmembers.

The society also offers webinars about WBG semiconductors.

The Conversation (0)

Get unlimited IEEE Spectrum access

Become an IEEE member and get exclusive access to more stories and resources, including our vast article archive and full PDF downloads
Get access to unlimited IEEE Spectrum content
Network with other technology professionals
Establish a professional profile
Create a group to share and collaborate on projects
Discover IEEE events and activities
Join and participate in discussions

3D-Stacked CMOS Takes Moore’s Law to New Heights

When transistors can’t get any smaller, the only direction is up

10 min read
An image of stacked squares with yellow flat bars through them.
Emily Cooper
Green

Perhaps the most far-reaching technological achievement over the last 50 years has been the steady march toward ever smaller transistors, fitting them more tightly together, and reducing their power consumption. And yet, ever since the two of us started our careers at Intel more than 20 years ago, we’ve been hearing the alarms that the descent into the infinitesimal was about to end. Yet year after year, brilliant new innovations continue to propel the semiconductor industry further.

Along this journey, we engineers had to change the transistor’s architecture as we continued to scale down area and power consumption while boosting performance. The “planar” transistor designs that took us through the last half of the 20th century gave way to 3D fin-shaped devices by the first half of the 2010s. Now, these too have an end date in sight, with a new gate-all-around (GAA) structure rolling into production soon. But we have to look even further ahead because our ability to scale down even this new transistor architecture, which we call RibbonFET, has its limits.

Keep Reading ↓Show less
{"imageShortcodeIds":[]}