The February 2023 issue of IEEE Spectrum is here!

Close bar

How the Parker Solar Probe Survives Close Encounters With the Sun

An elaborate cooling system is designed to protect the space probe through sizzling flybys


11 min read
Illustration of the Parker Solar Probe in orbit around the sun.
Illustration: NASA

Over the past six decades, 12 people have walked on the moon, spacecraft have visited every planet from Mercury to Neptune, and four rovers have racked up more than 60 kilometers traveling on the surface of Mars. And yet, despite the billions of dollars spent on the world’s civilian space programs, never has a probe journeyed very close to the sun. The nearest approach, by the Helios B probe in 1976, came no closer than 43 million km.

Why is that? There’s been no lack of interest in the sun—quite the opposite. Of all extraterrestrial bodies, the sun has the largest influence on us: It controls the radiation doses that astronauts experience and also affects the electronics in the myriad satellites on which we increasingly rely. Solar storms can even disrupt electric power grids, as famously happened in 1989, when one such storm blacked out the entire province of Quebec and caused ripple effects on electric grids in the United States.

Keep reading...Show less

This article is for IEEE members only. Join IEEE to access our full archive.

Join the world’s largest professional organization devoted to engineering and applied sciences and get access to all of Spectrum’s articles, podcasts, and special reports. Learn more →

If you're already an IEEE member, please sign in to continue reading.

Membership includes:

  • Get unlimited access to IEEE Spectrum content
  • Follow your favorite topics to create a personalized feed of IEEE Spectrum content
  • Save Spectrum articles to read later
  • Network with other technology professionals
  • Establish a professional profile
  • Create a group to share and collaborate on projects
  • Discover IEEE events and activities
  • Join and participate in discussions

IEEE Medal of Honor Goes to Vint Cerf

He codesigned the Internet protocol and transmission control protocol

2 min read
Photo of a man with a white beard in a dark suit.
The Royal Society

IEEE Life Fellow Vinton “Vint” Cerf, widely known as the “Father of the Internet,” is the recipient of the 2023 IEEE Medal of Honor. He is being recognized “for co-creating the Internet architecture and providing sustained leadership in its phenomenal growth in becoming society’s critical infrastructure.”

The IEEE Foundation sponsors the annual award.

Keep Reading ↓Show less

Fine-Tuning the Factory: Simulation App Helps Optimize Additive Manufacturing Facility

Additive manufacturing processes can provide rapid and customizable production of high-quality components

7 min read
Fine-Tuning the Factory: Simulation App Helps Optimize Additive Manufacturing Facility

An example of a part produced through the metal powder bed fusion process.

This sponsored article is brought to you by COMSOL.

History teaches that the Industrial Revolution began in England in the mid-18th century. While that era of sooty foundries and mills is long past, manufacturing remains essential — and challenging. One promising way to meet modern industrial challenges is by using additive manufacturing (AM) processes, such as powder bed fusion and other emerging techniques. To fulfill its promise of rapid, precise, and customizable production, AM demands more than just a retooling of factory equipment; it also calls for new approaches to factory operation and management.

Keep Reading ↓Show less
{"imageShortcodeIds":["32338242"]}