Hexapod Robot Gets Even Better at Being Indestructible

Any kind of damage is just a flesh wound for this adaptable walking hexapod

2 min read
Hexapod Robot Gets Even Better at Being Indestructible

Last year, we wrote about a hexapod robot that could teach itself to walk after you chopped its leg off. It was awesome. It still is awesome, because if you have any experience with robots, you know that they malfunction almost continuously. Last week, we saw some updated results from the same researchers, and after perusing both papers with much scratching-of-heads and stabbing-out-of-eyes, we've figured out what's new and exciting for 2014.

First, let's take a look at the aforementioned awesomeness of a robot that can keep on coming for you even after it loses a leg:

Okay, so here's what the newness seems to be: in last year's paper, the robots relied on experimental discovery to determine the best compensatory gait to overcome whatever damage they were experiencing. So, whenever something bad happened, they'd try a whole bunch of stuff to gradually figure out a better gait. This worked fine, but took about 20 minutes each time, which (I guess) seemed like a very long time to the researchers.

In the more recent paper, the damage adaptation time has been reduced to 2 minutes by eliminating most of the experimental discovery step. Instead, the robot runs through a bunch of pre-discovered gaits (a "six dimensional behavioral repertoire"), evaluates a series of them, and then selects the best. This repertoire is quite extensive, containing approximately 13,000 different gaits. It took two weeks to create using a robot model running in simulation (20 million iterations of a gait generation algorithm), but since you only ever have to do it one single time for each robot (and it can be done at design time before deployment), it saves you time in the field, which is where time is actually important.

The difference between 20 minutes of work to develop a new gait and 2 minutes of work is definitely significant for small robots, which are limited in both computational power and battery life. As researchers seek to emphasize simplicity and low cost (in order to deploy more robots efficiently), anything that can make each individual robot more capable, even a little bit, can make it much more likely that a given task will be completed successfully. 

[ Paper ] via [ Medium ] via [ Gizmodo ]

The Conversation (0)

The Bionic-Hand Arms Race

The prosthetics industry is too focused on high-tech limbs that are complicated, costly, and often impractical

12 min read
A photograph of a young woman with brown eyes and neck length hair dyed rose gold sits at a white table. In one hand she holds a carbon fiber robotic arm and hand. Her other arm ends near her elbow. Her short sleeve shirt has a pattern on it of illustrated hands.

The author, Britt Young, holding her Ottobock bebionic bionic arm.

Gabriela Hasbun. Makeup: Maria Nguyen for MAC cosmetics; Hair: Joan Laqui for Living Proof

In Jules Verne’s 1865 novel From the Earth to the Moon, members of the fictitious Baltimore Gun Club, all disabled Civil War veterans, restlessly search for a new enemy to conquer. They had spent the war innovating new, deadlier weaponry. By the war’s end, with “not quite one arm between four persons, and exactly two legs between six,” these self-taught amputee-weaponsmiths decide to repurpose their skills toward a new projectile: a rocket ship.

The story of the Baltimore Gun Club propelling themselves to the moon is about the extraordinary masculine power of the veteran, who doesn’t simply “overcome” his disability; he derives power and ambition from it. Their “crutches, wooden legs, artificial arms, steel hooks, caoutchouc [rubber] jaws, silver craniums [and] platinum noses” don’t play leading roles in their personalities—they are merely tools on their bodies. These piecemeal men are unlikely crusaders of invention with an even more unlikely mission. And yet who better to design the next great leap in technology than men remade by technology themselves?

Keep Reading ↓Show less