The December 2022 issue of IEEE Spectrum is here!

Close bar

Haptic Safety for Unmanned Vehicles

Maryland researchers advance networked control and virtual reality for added safety.

3 min read
University of Maryland

Even as fully automated vehicles continue to be tested and used on roadways, there will likely still be a need for human involvement. Anticipating this need, Nikhil Chopra, an associate professor in the Department of Mechanical Engineering at the University of Maryland, is working on in-vehicle technology that will summon help in certain environments.

“We are developing a secure tele assist feature that can send an alert about unknown surroundings, so a driver can take control of the car from a remote location for added safety,” Chopra explains. In driving environments that call for flexibility and a high-level of decision-making, a human would currently be a better bet than a machine. A scenario where there is road construction and a detour that forces the vehicle into unfamiliar territory is a good example of this, according to Chopra. “In this case, someone would assume control of the wheel and pedals remotely to navigate through this environment,” he says.

How it Works

Remember that childhood game Simon Says? The one by Milton Bradley? You follow the flashing lights (red, blue, yellow and green) and try to imitate the sequence. The machine compares your selections to its own. The challenge is to remember all the flashing colors in the right order.

Flash forward to today and reverse the roles. Now a machine can imitate you in real-time. Now you can hold a joystick or data glove to communicate tactile sensations to cars and robots and use this capability to improve efficiency while advancing safety.

With haptic devices, humans can interact with computers by sending and receiving information through felt sensations. This is the kind of work that Chopra has been spearheading in recent years. A good portion of his research in the automotive domain aims to advance networked control for connected semiautonomous vehicles and virtual reality-based multimodal learning in self-driving cars.

Collision Avoidance

“The work involves using inter-vehicle communication for cooperative adaptive cruise control with safety features such as collision avoidance,” Chopra explains. “The goal is to enhance the safety of current adaptive cruise controls while improving the driving experience.”

A vehicle equipped with adaptive cruise control can maintain a safe distance from the vehicle ahead of it through technology that automatically adjusts its speed. This is especially beneficial on high volume roadways and stop and go traffic. Cooperative adaptive cruise control expands on this capability by allowing vehicles to talk to each other through dedicated short-range communication, enabling cooperative and synchronous braking and acceleration.

Using visual and haptic data, Chopra is also studying the automatic synthesis of acceleration and steering commands. “We are creating a virtual reality system to enable multimodal imitation learning,” says Chopra. Some of the equipment in this system includes a steering wheel and foot pedals that control a scaled-down vehicle. The experience is similar to driving a car except you operate it remotely.

Robotic Systems

In his Semiautonomous Systems Laboratory, there is a testbed composed of networked haptic devices and robotic systems, which are used to conduct experiments in networked control, cooperative control and bilateral teleoperation. A human can use a robot to conduct a basic task remotely (such as cutting or drawing) by controlling the movements of a nearby robot, or haptic device. For example, a remote robot will mimic the hand movements of someone working a lever or joystick.

“We are working to advance control algorithms and methodologies to improve the capabilities of robots and vehicles in various environments,” observes Chopra. “Ensuring a robust level of security and privacy is also a big part of the work.”


The Conversation (0)

We Need More Than Just Electric Vehicles

To decarbonize road transport we need to complement EVs with bikes, rail, city planning, and alternative energy

11 min read
A worker works on the frame of a car on an assembly line.

China has more EVs than any other country—but it also gets most of its electricity from coal.

VCG/Getty Images

EVs have finally come of age. The total cost of purchasing and driving one—the cost of ownership—has fallen nearly to parity with a typical gasoline-fueled car. Scientists and engineers have extended the range of EVs by cramming ever more energy into their batteries, and vehicle-charging networks have expanded in many countries. In the United States, for example, there are more than 49,000 public charging stations, and it is now possible to drive an EV from New York to California using public charging networks.

With all this, consumers and policymakers alike are hopeful that society will soon greatly reduce its carbon emissions by replacing today’s cars with electric vehicles. Indeed, adopting electric vehicles will go a long way in helping to improve environmental outcomes. But EVs come with important weaknesses, and so people shouldn’t count on them alone to do the job, even for the transportation sector.

Keep Reading ↓Show less