Graphene Is Losing Favor as the Two-Dimensional Material of the Future

Making electronic components is proving to be much easier with molybdenum disulfide than with graphene

2 min read
Graphene Is Losing Favor as the Two-Dimensional Material of the Future

 

About 18 months ago, research at Ecole Polytechnique Federale de Lausanne’s (EPFL) Laboratory of Nanoscale Electronics and Structures in Switzerland was beginning to suggest that molybdenum disulfide (MoS2)—which occurs as the mineral molybdenite—may serve as preferable choice over graphene in a post-silicon world. 

Since that time, research has been hotly pursuing the use of this abundant mineral for electronic applications since not only does it possess some of graphene’s attractive qualities, but it brings them to the table with a band gap, unlike graphene. So attractive has this material become that even the discoverers of graphene are now focusing much of their research into using MoS2

Now researchers at MIT, who have struggled to get graphene to do anything in electronics except for some radio-frequency applications, have turned to MoS2 and have quickly managed to get the one-atom-thick material to serve as the basis for a variety of electronic components

The research, which was published this month in the journal Nano Letters ("Integrated Circuits Based on Bilayer MoS2 Transistors"),  produced an inverter, a NAND (Negated AND) gate, a memory device and a ring oscillator using large sheets of the MoS2.

The MIT researchers believe that this list of electronic components is only the beginning of what is possible with the material. One of the researchers, Tomás Palacios, Associate Professor in the Department of Electrical Engineering and Computer Science, believes that the material could find early applications in large-screen displays in which a separate transistor would control each pixel of the display.

Palacios further notes in the MIT press release that the MoS2 when used in combination with other 2-D materials could make light-emitting devices that could be made to make an entire wall glow, making for a warmer and less glaring light that comes from single light bulbs.

This work certainly seems to promise a far greater range of applications for the material than the EPFL research initially indicated. At that time, the Swiss researchers believed the material would probably see use as a complement to graphene in applications that required thin and transparent semiconductors. It seems now the material has much greater promise.

The Conversation (0)

A Circuit to Boost Battery Life

Digital low-dropout voltage regulators will save time, money, and power

11 min read
Image of a battery held sideways by pliers on each side.
Edmon de Haro

YOU'VE PROBABLY PLAYED hundreds, maybe thousands, of videos on your smartphone. But have you ever thought about what happens when you press “play”?

The instant you touch that little triangle, many things happen at once. In microseconds, idle compute cores on your phone's processor spring to life. As they do so, their voltages and clock frequencies shoot up to ensure that the video decompresses and displays without delay. Meanwhile, other cores, running tasks in the background, throttle down. Charge surges into the active cores' millions of transistors and slows to a trickle in the newly idled ones.

Keep Reading ↓ Show less