Germs That Build Circuits

With viruses serving as construction crews and DNA as the blueprint, biotechnology may hold the key to postlithography ICs

10 min read

Photo: Jason Grow
Angela Belcher, a materials scientist at the Massachusetts Institute of Technology, is breeding microbes to assemble nanometer-scale structures that could be used in circuits.

By the time you read this, there's a good chance a virus has built a transistor. Last July, a crowd of microbiologists in New York City heard materials scientist Angela Belcher make a bold prediction: within six months, her laboratory at the Massachusetts Institute of Technology (MIT, Cambridge) would have genetically engineered a virus to coat itself in a crystalline semiconductor sheath and locate and bridge two electrodes--thus forming the critical part of a field-effect transistor, the kind on which most computer chips rely. If Belcher delivers, it will dramatically illustrate biology's promise in furthering nanotechnology, the manufacture of circuits and devices only billionths of a meter in size.

Keep reading...Show less

This article is for IEEE members only. Join IEEE to access our full archive.

Join the world’s largest professional organization devoted to engineering and applied sciences and get access to all of Spectrum’s articles, podcasts, and special reports. Learn more →

If you're already an IEEE member, please sign in to continue reading.

Membership includes:

  • Get unlimited access to IEEE Spectrum content
  • Follow your favorite topics to create a personalized feed of IEEE Spectrum content
  • Save Spectrum articles to read later
  • Network with other technology professionals
  • Establish a professional profile
  • Create a group to share and collaborate on projects
  • Discover IEEE events and activities
  • Join and participate in discussions

Why EVs Aren't a Climate Change Panacea

Unless people change their behaviors, we won't hit 2050 net zero emissions targets

9 min read
Tesla Inc. vehicles in a parking lot after arriving at a port in Yokohama, Japan, on Thursday, Oct. 28, 2022.

Teslas in a parking lot after arriving at a port in Yokohama, Japan.

Toru Hanai/Bloomberg/Getty Images

“Electric cars will not save the climate. It is completely wrong,” Fatih Birol, Executive Director of the International Energy Agency (IEA), has stated.

If Birol were from Maine, he might have simply observed, “You can’t get there from here.”

Keep Reading ↓Show less
{"imageShortcodeIds":[]}

How to Stake Electronic Components Using Adhesives

Staking provides extra mechanical support for various electronic parts

2 min read
Adhesive staking of DIP component on a circuit board using Master Bond EP17HTDA-1.

The main use for adhesive staking is to provide extra mechanical support for electronic components and other parts that may be damaged due to vibration, shock, or handling.

Master Bond

This is a sponsored article brought to you by Master Bond.

Sensitive electronic components and other parts that may be damaged due to vibration, shock, or handling can often benefit from adhesive staking. Staking provides additional mechanical reinforcement to these delicate pieces.

Keep Reading ↓Show less