The August 2022 issue of IEEE Spectrum is here!

Close bar

GE Aviation Electrifies Airplane Engines to Meet Carbon Emission Goals

Smaller lighter engines, 3D printed parts, and more electrical engineers are needed for the next era of flight

4 min read
GE Aviation’s first additive synchronous variable frequency generator.
GE Aviation’s first additive synchronous variable frequency generator.
Photo: GE Aviation

THE INSTITUTEThe aerospace industry is under intense pressure to reduce its impact on the environment. Between 2021 and 2035, the industry will have to offset a total of 2.6 billion metric tons of carbon dioxide under the Carbon Offsetting and Reduction Scheme for International Aviation, an emissions mitigation approach for the industry.

GE Aviation is one company that is working to meet the mandates by increasing the electrification of the aircraft it builds. The company produces 65 percent of all commercial airplane engines. It also has a large market share of components and integrated systems for commercial, business, and general aviation aircraft. Every two seconds, an aircraft powered by GE technology takes off somewhere in the world, the company says.

Keep Reading ↓Show less

This article is for IEEE members only. Join IEEE to access our full archive.

Join the world’s largest professional organization devoted to engineering and applied sciences and get access to all of Spectrum’s articles, podcasts, and special reports. Learn more →

If you're already an IEEE member, please sign in to continue reading.

Membership includes:

  • Get unlimited access to IEEE Spectrum content
  • Follow your favorite topics to create a personalized feed of IEEE Spectrum content
  • Save Spectrum articles to read later
  • Network with other technology professionals
  • Establish a professional profile
  • Create a group to share and collaborate on projects
  • Discover IEEE events and activities
  • Join and participate in discussions

Get unlimited IEEE Spectrum access

Become an IEEE member and get exclusive access to more stories and resources, including our vast article archive and full PDF downloads
Get access to unlimited IEEE Spectrum content
Network with other technology professionals
Establish a professional profile
Create a group to share and collaborate on projects
Discover IEEE events and activities
Join and participate in discussions

Digging Into the New QD-OLED TVs

Formerly rival technologies have come together in Samsung displays

5 min read
Television screen displaying closeup of crystals

Sony's A95K televisions incorporate Samsung's new QD-OLED display technology.

Sony
Blue
Televisions and computer monitors with QD-OLED displays are now on store shelves. The image quality is—as expected—impressive, with amazing black levels, wide viewing angles, a broad color gamut, and high brightness. The products include:

All these products use display panels manufactured by Samsung but have their own unique display assembly, operating system, and electronics.

I took apart a 55-inch Samsung S95B to learn just how these new displays are put together (destroying it in the process). I found an extremely thin OLED backplane that generates blue light with an equally thin QD color-converting structure that completes the optical stack. I used a UV light source, a microscope, and a spectrometer to learn a lot about how these displays work.

Keep Reading ↓Show less