Gadgets Gab at 60 GHz

Cheap silicon transceivers broadcasting in this still-unlicensed band may usher in the hi-def wireless home

8 min read
Gadgets Gab at 60 GHz
Illustration: Harry Campbell

People not only talk on the airwaves, they increasingly expect their gadgets to do the same. The trend began in the late 1990s with Bluetooth, which provided 1 megabit of data per second. Then Wi-Fi and the IEEE 802.11 standard pushed the rate to 100 Mb/s. Now ultrawideband systems are going five times as fast as that.

In principle, such radio links, operating over short ranges, could replace the cables that now clutter our homes and offices, eliminate the speed penalty of going wireless, and even allow portable devices to off-load computing work to a nearby base station. The devices could thus shed hardware to become smaller, lighter, and cheaper.

Keep reading...Show less
{"imageShortcodeIds":[]}

This article is for IEEE members only. Join IEEE to access our full archive.

Join the world’s largest professional organization devoted to engineering and applied sciences and get access to all of Spectrum’s articles, podcasts, and special reports. Learn more →

If you're already an IEEE member, please sign in to continue reading.

Membership includes:

  • Get unlimited access to IEEE Spectrum content
  • Follow your favorite topics to create a personalized feed of IEEE Spectrum content
  • Save Spectrum articles to read later
  • Network with other technology professionals
  • Establish a professional profile
  • Create a group to share and collaborate on projects
  • Discover IEEE events and activities
  • Join and participate in discussions

"SuperGPS" Accurate to 10 Centimeters or Better

New optical-wireless hybrid makes use of existing telecommunications infrastructure

3 min read
illustration of man looking at giant smart phone with map and red "you are here" symbol
iStock

Modern life now often depends on GPS(short for Global Positioning System), but it can err on the order of meters in cities. Now a new study from a team of Dutch researchers reveals a terrestrial positioning system based on existing telecommunications networks can deliver geolocation info accurate to within 10 centimeters in metropolitan areas.

The scientists detailed their findings 16 November in the journal Nature.

Keep Reading ↓Show less

The Future of the Transistor Is Our Future

Nothing but better devices can tackle humanity’s growing challenges

7 min read
Close-up of a colorful semiconductor wafer held the white gloved hands of a clean room technician.

A 300-millimeter wafer from a GlobalFoundries fab in Dresden is full of advanced transistors. The industry will need to continue to produce more and better devices, argues the author.

Liesa Johannssen-Koppitz/Bloomberg/Getty Images

This is a guest post in recognition of the 75th anniversary of the invention of the transistor. It is adapted from an essay in the July 2022 IEEE Electron Device Society Newsletter. The views expressed here are solely those of the author and do not represent positions of IEEE Spectrum or the IEEE.

On the 75th anniversary of the invention of the transistor, a device to which I have devoted my entire career, I’d like to answer two questions: Does the world need better transistors? And if so, what will they be like?

Keep Reading ↓Show less
{"imageShortcodeIds":[]}

Get the Rohde & Schwarz EMI White Paper

Learn how to measure and reduce common mode electromagnetic interference (EMI) in electric drive installations

1 min read
Rohde & Schwarz

Nowadays, electric machines are often driven by power electronic converters. Even though the use of converters brings with it a variety of advantages, common mode (CM) signals are a frequent problem in many installations. Common mode voltages induced by the converter drive common mode currents damage the motor bearings over time and significantly reduce the lifetime of the drive.

Download this free whitepaper now!

Keep Reading ↓Show less