The February 2023 issue of IEEE Spectrum is here!

Close bar

Future Fab

How software is helping Intel go nano—and beyond

12 min read
Future Fab
Software runs today’s semiconductor factories. Humans enter the fab only to maintain and fix the equipment.
Photo: Intel Corp

The modern microprocessor is one of the premier markers of technological achievement. And rightly so. But if a billion transistors on a postage-stamp-size chip impress you, consider the fabrication facilities that put them there. And not just on one chip, but on hundreds of them on dinner-plate-size wafers, which move by the thousands through the manufacturing line 24 hours a day, 365 days a year.

In a single day, a state-of-the-art fab can make nearly 100 trillion transistors, roughly 250 times the number of stars in the Milky Way galaxy. Such facilities are by any standard the most complex, and, at an average cost of US $3 billion to build and equip, the most costly factories ever built by humankind.

Keep reading...Show less

This article is for IEEE members only. Join IEEE to access our full archive.

Join the world’s largest professional organization devoted to engineering and applied sciences and get access to all of Spectrum’s articles, podcasts, and special reports. Learn more →

If you're already an IEEE member, please sign in to continue reading.

Membership includes:

  • Get unlimited access to IEEE Spectrum content
  • Follow your favorite topics to create a personalized feed of IEEE Spectrum content
  • Save Spectrum articles to read later
  • Network with other technology professionals
  • Establish a professional profile
  • Create a group to share and collaborate on projects
  • Discover IEEE events and activities
  • Join and participate in discussions

IEEE Medal of Honor Goes to Vint Cerf

He codesigned the Internet protocol and transmission control protocol

2 min read
Photo of a man with a white beard in a dark suit.
The Royal Society

IEEE Life Fellow Vinton “Vint” Cerf, widely known as the “Father of the Internet,” is the recipient of the 2023 IEEE Medal of Honor. He is being recognized “for co-creating the Internet architecture and providing sustained leadership in its phenomenal growth in becoming society’s critical infrastructure.”

The IEEE Foundation sponsors the annual award.

Keep Reading ↓Show less

Learn How Global Configuration Management and IBM CLM Work Together

In this presentation we will build the case for component-based requirements management

2 min read

This is a sponsored article brought to you by 321 Gang.

To fully support Requirements Management (RM) best practices, a tool needs to support traceability, versioning, reuse, and Product Line Engineering (PLE). This is especially true when designing large complex systems or systems that follow standards and regulations. Most modern requirement tools do a decent job of capturing requirements and related metadata. Some tools also support rudimentary mechanisms for baselining and traceability capabilities (“linking” requirements). The earlier versions of IBM DOORS Next supported a rich configurable traceability and even a rudimentary form of reuse. DOORS Next became a complete solution for managing requirements a few years ago when IBM invented and implemented Global Configuration Management (GCM) as part of its Engineering Lifecycle Management (ELM, formerly known as Collaborative Lifecycle Management or simply CLM) suite of integrated tools. On the surface, it seems that GCM just provides versioning capability, but it is so much more than that. GCM arms product/system development organizations with support for advanced requirement reuse, traceability that supports versioning, release management and variant management. It is also possible to manage collections of related Application Lifecycle Management (ALM) and Systems Engineering artifacts in a single configuration.

Keep Reading ↓Show less