The February 2023 issue of IEEE Spectrum is here!

Close bar

Flexible Sensors Measure Blood Flow Under the Skin

A flexible skin device capable of track ing blood flow could monitor the health of patients around the clock

3 min read
Flexible Sensors Measure Blood Flow Under the Skin
Photograph of the epidermal device placed on skin above a blood vessel. The soft, stretchable epidermal device laminates onto skin like a temporary tattoo to perform non-invasive, real-time mapping of blood flow changes beneath the skin.
Image: University of Illinois at Urbana-Champaign

Today’s best medical devices for measuring blood flow require patients to first show up at a clinic or hospital, then stay very still during the imaging procedure. But an experimental sensor that clings to skin like a temporary tattoo could enable 24-hour monitoring of blood flow wherever a patient goes.

A wearable sensor could mean the difference between taking what is essentially a snapshot of a patient’s health while he or she is at the clinic, and getting the equivalent of around-the-clock video of that person’s blood flow throughout the day. Testing showed that a flexible “epidermal electronics” blood flow monitor developed by an international team led by researchers at the University of Illinois at Urbana-Champaign can measure the blood flow in the outermost 1 to 2 millimeters of skin—even for human bodies in motion. That points to the possibility of a future wearable device that could continuously measure the blood flow of patients while they go about their daily lives.

“Say you have diabetic patients and want to be able to monitor changes in specific blood vessels continuously for 24 hours a day,” says Richard Chad Webb, a Ph.D. candidate in materials science and engineering at the University of Illinois. “There’s no way of doing that today.”

The University of Illinois team developed the new wearable device in cooperation with the U.S. National Institutes of Health and a broader group of U.S. and Chinese researchers. Webb was the lead author of a paper detailing the group’s work; it was published in the 30 Oct 2015 online issue of the journal Science Advances

Most state-of-the-art devices for measuring blood flow use optical imaging techniques that require patients to stay still during the process. Webb and his colleagues turned to flexible electronics technology to find a possible wearable solution. (One of the study’s coauthors is John Rogers, a materials scientist and engineer at the University of Illinois whose lab has pioneered many examples of biocompatible flexible electronics.)

Researchers eventually developed a lightweight, ultra-thin device that sits on top of the skin without distorting the blood flow it seeks to measure. It clings tightly to the skin due to van der Waals forcesthe weak attractive forces between molecules. This attraction prevents any motion between the sensor and skin that could affect the accuracy of readings. As a backup, medical tape can ensure the device stays put.

“Fundamentally, what we were trying to do was remove the relative motion between the body and detector system,” Webb explains. “That allows you to get to same clinical information [as state-of-the-art optical imaging devices] without the restriction of immobilizing somebody.”

Webb and his colleagues built the device from ultra-thin layers of silicon, gold, chromium, and copper supported by silicone. Most of the sensor’s bulk comes from a 40-micrometer-thick layer of silicone. Each of the other layers has a thickness of just tens or hundreds of nanometers.

The wearable gadget detects differences in heat patterns caused by the blood flow beneath the skin. A 1.5-millimeter thermal actuator within the device heats up by 6 to 7 degrees Celsius to provide a thermal background for the measurements. That sounds like a significant temperature change for something sitting against human skin, but it’s below the threshold of skin sensitivity. The 3.5 milliwatts per square millimeter of thermal energy entering the skin is so minuscule that someone wearing the device wouldn’t notice the difference.

Two rings of sensors around the actuator detect the temperature differences in the heat patterns with a precision within 0.01 degrees Celsius. Last but not least, computer algorithms help interpret the heat pattern differences as blood flow rate.

Testing with the wearable device placed above the wrist veins of human volunteers showed how it could work in practice. Blood flow measurements were taken as the human subjects stood motionless for five minutes, as they stepped up and down on an aerobic stepper for three minutes, and, finally, as they lied down on their backs. Researchers also compared the wearable device’s results with the state-of-the-art optical imagers to ensure that the measurements were reasonably accurate.

There’s still a ways to go before this experimental device could lead to a commercial wearable. The researchers still need to figure out how to make a version complete with a self-contained power source and components that would let it wirelessly transmit data to a laptop or other device, says Webb.

But once that happens, such devices could help revolutionize medicine by providing an unprecedented amount of data for understanding health conditions such as diabetes, the hardening of arteries, and general human aging. Such flexible sensors could also be placed on internal organs, surgical tools, or implantable devices.

For now, Webb and his colleagues continue to refine the heat-mapping blood flow device with the goal of making it smaller. A next step might be the development of a device that could measure blood flow through individual capillaries rather than within just the larger blood vessels.

The Conversation (1)
G Balakrishna Reddy12 Aug, 2022
INDV

Respected Sir, I am G Balakrishna Reddy, a Research Scholar at NIT Calicut, India. Sir, I am working in the area of disabled friendly work space design. Sir, for my research I need this Skin Blood flow monitoring sensors. So, could you please provide the purchasing details of this sensor??? I will be keenly waiting for your response.

Mail Id: greddy890@gmail.com

Linked in: https://www.linkedin.com/in/g-balakrishna-reddy-35875a151/

Illustration showing an astronaut performing mechanical repairs to a satellite uses two extra mechanical arms that project from a backpack.

Extra limbs, controlled by wearable electrode patches that read and interpret neural signals from the user, could have innumerable uses, such as assisting on spacewalk missions to repair satellites.

Chris Philpot

What could you do with an extra limb? Consider a surgeon performing a delicate operation, one that needs her expertise and steady hands—all three of them. As her two biological hands manipulate surgical instruments, a third robotic limb that’s attached to her torso plays a supporting role. Or picture a construction worker who is thankful for his extra robotic hand as it braces the heavy beam he’s fastening into place with his other two hands. Imagine wearing an exoskeleton that would let you handle multiple objects simultaneously, like Spiderman’s Dr. Octopus. Or contemplate the out-there music a composer could write for a pianist who has 12 fingers to spread across the keyboard.

Such scenarios may seem like science fiction, but recent progress in robotics and neuroscience makes extra robotic limbs conceivable with today’s technology. Our research groups at Imperial College London and the University of Freiburg, in Germany, together with partners in the European project NIMA, are now working to figure out whether such augmentation can be realized in practice to extend human abilities. The main questions we’re tackling involve both neuroscience and neurotechnology: Is the human brain capable of controlling additional body parts as effectively as it controls biological parts? And if so, what neural signals can be used for this control?

Keep Reading ↓Show less
{"imageShortcodeIds":[]}