The August 2022 issue of IEEE Spectrum is here!

Close bar

Far From Radio Interference, the Square Kilometre Array Takes Root in South Africa and the Australian Outback

The telescope’s first phase, SKA1, blazes the path to radio astronomy’s future discovery machine

13 min read
Photo of Murchison Radio-astronomy Observatory, in Western Australia.
Photo: CSIRO

Photo of Murchison Radio-astronomy Observatory, in Western Australia.Standing Tall: Dish antennas stand out against the sky at the Murchison Radio-astronomy Observatory, in Western Australia. They’re part of the Australian Square Kilometre Array Pathfinder telescope (ASKAP), which is equipped with special “phased array feeds”—sets of 188 individual receivers that pick up radio signals reflected off the dishes, giving the telescope a wide field of view.Photo: CSIRO

Even in early winter, the sun is harsh in Western Australia’s Murchison shire. In this land of unpaved roads, kangaroo tracks, and low, scrubby vegetation, visitors can and sometimes do get lost. Nevertheless, here I am, a few hundred kilometers from the coast, standing on rusty red dirt, hiding under my sun hat. I am visiting a future site of one of the most ambitious telescopes ever conceived.

Keep reading...Show less

This article is for IEEE members only. Join IEEE to access our full archive.

Join the world’s largest professional organization devoted to engineering and applied sciences and get access to all of Spectrum’s articles, podcasts, and special reports. Learn more →

If you're already an IEEE member, please sign in to continue reading.

Membership includes:

  • Get unlimited access to IEEE Spectrum content
  • Follow your favorite topics to create a personalized feed of IEEE Spectrum content
  • Save Spectrum articles to read later
  • Network with other technology professionals
  • Establish a professional profile
  • Create a group to share and collaborate on projects
  • Discover IEEE events and activities
  • Join and participate in discussions

Artificial Synapses 10,000x Faster Than Real Thing

New protonic programmable resistors may help speed learning in deep neural networks

3 min read
Conceptual illustration shows a brain shape made of circuits on a multilayered chip structure.
Ella Maru Studio and Murat Onen

New artificial versions of the neurons and synapses in the human brain are up to 1,000 times smaller than neurons and at least 10,000 times faster than biological synapses, a study now finds.

These new devices may help improve the speed at which the increasingly common and powerful artificial intelligence systems known as deep neural networks learn, researchers say.

Keep Reading ↓Show less

Amazon to Acquire iRobot F​or $1.7 Billion

The deal will give the e-retail behemoth even more access to our homes

4 min read
A photo of an iRobot Roomba with an Amazon logo digitally added to it
Photo-illustration: iStockphoto/Amazon/IEEE Spectrum

This morning, Amazon and iRobot announced “a definitive merger agreement under which Amazon will acquire iRobot” for US $1.7 billion. The announcement was a surprise, to put it mildly, and we’ve barely had a chance to digest the news. But taking a look at what’s already known can still yield initial (if incomplete) answers as to why Amazon and iRobot want to team up—and whether the merger seems like a good idea.

Keep Reading ↓Show less

Take the Lead on Satellite Design Using Digital Engineering

Learn how to accelerate your satellite design process and reduce risk and costs with model-based engineering methods

1 min read
Keysight
Keysight

Win the race to design and deploy satellite technologies and systems. Learn how new digital engineering techniques can accelerate development and reduce your risk and costs. Download this free whitepaper now!

Our white paper covers:

Keep Reading ↓Show less