This article is part of our exclusive IEEE Journal Watch series in partnership with IEEE Xplore.

Although the chances are low, gas-powered cars can sometimes catch on fire following a crash. But as the market shifts more toward electric vehicles (EVs), is there an equivalent safety issue, whereby passengers might be electrocuted following a crash?

Indeed, there is some risk that EVs—which rely on batteries with extremely high voltages—could electrocute passengers after a collision. In a study published the July issue of IEEE Transactions on Power Electronics, researchers describe a technique to significantly reduce the chances of this happening.

Yihua Hu, a reader (equivalent to an associate professor) at the University of York, in the United Kingdom, was involved in the study. He notes that the propulsion systems of electric vehicles rely on batteries with very high voltages, between 346 and 800 volts. For safety reasons, the Economic Commission for Europe of the United Nations (UNECE) Regulation R94 has already specified that following a crash, the voltages in any vehicle components, except the battery itself, must drop to a safe level (60 V) in less than a minute.

To accommodate this, electric vehicles are programmed with a protection mode that is instantly triggered following a collision. “The breaker will be tripped immediately to isolate the battery from the other components, and the axle is disconnected from the traction motor by the gear box, and the [propulsion system] just rotates with no load,” explains Hu. “However, in this case, the residual electrical and mechanical energy stored in the capacitor and motor, respectively, will be maintained within the DC bus at the initial level for a long period—as long as over 5 minutes—not only violating the high-voltage safety requirement but increasing the possibility of electric shock.”

To address this issue, Hu’s team designed a hybrid approach, which relies on both the internal machine windings and external bleeder circuits to achieve the quick and safe discharge. “With the hybrid approach, the machine windings can be adopted as the auxiliary plant for the external bleeder circuits so as to reduce its size, achieving a relatively lightweight and cost-effective discharge technique suited to any EV drives,” explains Chao Gong, a member of Hu’s team who is now a postdoctoral researcher at the University of Alberta, in Canada.

They tested the approach, which involves three different algorithms, depending on the vehicle’s speed at the time of a crash, through simulations and experiments conducted on an electric-motor system in their lab. The results show that the combination of circuit bleeders and internal machine windings can safely lower the voltage of the DC bus to 60 V in just 5 seconds, which is among the fastest discharge times observed, and well within the UNECE safety guidelines.

Hu notes that his team’s proposed method is low cost, involves a compact structure, and has high reliability. He is currently collaborating with Dynex Semiconductor and Lotus Cars to test the technology in real-world settings.

Further investigation will be needed to address crash-safety-related problems, both in relation to the safety of the occupants and the protection of the fragile components in the EV. This might involve the use of more algorithms to improve the reliability of the safety features,” Hu says, noting that additional work would also have to be done to apply this approach to other electrified transportation systems, such as electric ships or trains.

The Conversation (1)
FB TS13 Sep, 2022

Our world already always have countless people keep burning to death alive (after traffic accidents), because of using gasoline (which easily starts fires) as fuel!

(Diesel fuel, for example, does NOT easily starts fires (& that is why POTUS car is specifically chosen to be a diesel, for example)!)

(Hydrogen, on the other hand, does NOT start fires but EXPLODES like a bomb!!!

If there are hydrogen vehicles around, do you seriously think their tanks would never leak or rapture, because of a traffic accident, for example???)

By the way, the way ALL crash tests done by ALL car/truck companies is actually extremely wrong & misleading!

Because, they do all crash tests w/ empty gas tanks but in real world gas tanks are never empty!

Often, people are "saved" at first but they are stuck in the wreckage & burn to death alive later, even though their cars/trucks are "highly safe" on paper!

We need national/global laws to force all car/truck companies to do crash tests actually in realistic conditions!

(& so, the REAL safety ratings of all cars/trucks can be finally actually seen by the general public!)

We Need More Than Just Electric Vehicles

To decarbonize road transport we need to complement EVs with bikes, rail, city planning, and alternative energy

11 min read
A worker works on the frame of a car on an assembly line.

China has more EVs than any other country—but it also gets most of its electricity from coal.

VCG/Getty Images

EVs have finally come of age. The total cost of purchasing and driving one—the cost of ownership—has fallen nearly to parity with a typical gasoline-fueled car. Scientists and engineers have extended the range of EVs by cramming ever more energy into their batteries, and vehicle-charging networks have expanded in many countries. In the United States, for example, there are more than 49,000 public charging stations, and it is now possible to drive an EV from New York to California using public charging networks.

With all this, consumers and policymakers alike are hopeful that society will soon greatly reduce its carbon emissions by replacing today’s cars with electric vehicles. Indeed, adopting electric vehicles will go a long way in helping to improve environmental outcomes. But EVs come with important weaknesses, and so people shouldn’t count on them alone to do the job, even for the transportation sector.

Keep Reading ↓Show less