The December 2022 issue of IEEE Spectrum is here!

Close bar

Doc at a Distance

Robot surgeons promise to save lives in remote communities, war zones, and disaster-stricken areas

12 min read
remote-controlled two-armed surgical robot “operates” on a plastic and rubber anatomical model of a human torso.

The Doctor Is In: Developed at the University of Washington’s BioRobotics Lab, a remote-controlled two-armed surgical robot “operates” on a plastic and rubber anatomical model of a human torso.

Photo: David Clugston

On a hot morning this past June, our research group at the University of Washington, in Seattle, crammed into two cargo vans and drove 2000 kilometers south to the rangeland north of Simi Valley, in southwestern California. In the back of one of the vans was our latest creation: a prototype surgical robot we’d been developing for the past four years. Our mission was to field-test the robot—by operating not on a person but rather on latex objects mimicking human organs, with a surgeon commanding the robot from a control console 100 meters away.

At the test site, we met the rest of our team—surgeons, aerospace engineers, networking experts—and set up a base camp on a flat expanse circled by undulating hills. Under a blistering sun, some of us assembled the robot, a portable surgery table, and a video camera under a canopy tent, while another group installed the surgical control console and a video monitor in a second tent. With all systems ready, we waited for the communications channel to be set up to link the two locations.

Keep reading...Show less
{"imageShortcodeIds":[]}

This article is for IEEE members only. Join IEEE to access our full archive.

Join the world’s largest professional organization devoted to engineering and applied sciences and get access to all of Spectrum’s articles, podcasts, and special reports. Learn more →

If you're already an IEEE member, please sign in to continue reading.

Membership includes:

  • Get unlimited access to IEEE Spectrum content
  • Follow your favorite topics to create a personalized feed of IEEE Spectrum content
  • Save Spectrum articles to read later
  • Network with other technology professionals
  • Establish a professional profile
  • Create a group to share and collaborate on projects
  • Discover IEEE events and activities
  • Join and participate in discussions

Deep Learning Gets a Boost From New Reconfigurable Processor

The ReAAP processor allows AI to be faster, more efficient

2 min read
different colored beams of light shooting up
iStock

This article is part of our exclusive IEEE Journal Watch series in partnership with IEEE Xplore.

Deep learning is a critical computing approach that is pushing the boundaries of technology – crunching immense amounts of data and uncovering subtle patterns that humans could never discern on their own. But for optimal performance, deep learning algorithms need to be supported with the right software compiler and hardware combinations. In particular, reconfigurable processors, which allow for flexible use of hardware resources for computing as needed, are key.

Keep Reading ↓Show less

Rory Cooper’s Wheelchair Tech Makes the World More Accessible

He has introduced customized controls and builds wheelchairs for rough terrain

6 min read
portrait of a man in a navy blue polo with greenery in the background
Abigail Albright

For more than 25 years, Rory Cooper has been developing technology to improve the lives of people with disabilities.

Cooper began his work after a spinal cord injury in 1980 left him paralyzed from the waist down. First he modified the back brace he was required to wear. He then turned to building a better wheelchair and came up with an electric-powered version that helped its user stand up. He eventually discovered biomedical engineering and was inspired to focus his career on developing assistive technology. His inventions have helped countless wheelchair users get around with more ease and comfort.

Keep Reading ↓Show less
{"imageShortcodeIds":[]}

Tools and Strategies for 3D EM Modeling and Design of Microwave Imaging Systems for Medical Applications

Learn how WiPL-D software suite can be efficiently used for biomedical applications

1 min read

Microwave Imaging (MWI) has attracted massive attention in the medical research field over the last decade due to its standout qualities of utilizing harmless non-ionizing radiation and affordable components. At present, conventional technologies (CT and MRI) which provide high-resolution images, still have several limitations such as their long examination time, non-portability, high cost, and also ionizing radiation.

MWI has several potential applications and one of the promising areas is malignant tissue detection as a contrast of permittivity with respect to healthy tissues inside the human body. In order to detect malignancy using MWI at different organs, particular imaging scenarios need to be considered.

Keep Reading ↓Show less