Disaster Forensics

What can electrical engineers learn from the world’s worst natural disasters?

10 min read
Disaster Forensics

It’s my job to drive straight into the heart of disaster zones.

On 11 March, a 9.0-magnitude earthquake triggered a monstrous tsunami that smashed into Japan’s northeast coast, killing more than 15 000 people in minutes and reducing entire towns to rubble. In the days that followed, more than 80 000 Japanese citizens fled their homes after the tsunami started a meltdown at three of the reactors at the Fukushima Dai-ichi nuclear power station. Those citizens left their whole lives behind, and most are still living as refugees. But in early April, I drove into the wreckage of Japan’s coastal towns to see what lessons I could learn in the ruins.

As an electrical engineer with a keen interest in what I call ”disaster forensics,” I travel to the worst natural disaster sites around the world to assess the damage inflicted on communication networks and electric power grids. I’ve surveyed the aftermath of three major Gulf Coast hurricanes, including Katrina, and I’ve stood in the rubble caused by earthquakes in Chile, New Zealand, and Japan. As I’ve collected field data, I’ve begun to challenge the common belief that humans can’t compete with nature’s fury and that most of our creations will fail in a hurricane’s winds or a tsunami’s waves. That fatalism doesn’t sit well with me. I think that studying the world’s worst natural disasters can lead to better designs and critical infrastructures that can better withstand the brunt of a storm or the upheaval of an earthquake.

Keep reading...Show less

This article is for IEEE members only. Join IEEE to access our full archive.

Join the world’s largest professional organization devoted to engineering and applied sciences and get access to all of Spectrum’s articles, podcasts, and special reports. Learn more →

If you're already an IEEE member, please sign in to continue reading.

Membership includes:

  • Get unlimited access to IEEE Spectrum content
  • Follow your favorite topics to create a personalized feed of IEEE Spectrum content
  • Save Spectrum articles to read later
  • Network with other technology professionals
  • Establish a professional profile
  • Create a group to share and collaborate on projects
  • Discover IEEE events and activities
  • Join and participate in discussions

Video Friday: Turkey Sandwich

Your weekly selection of awesome robot videos

4 min read
A teleoperated humanoid robot torso stands in a kitchen assembling a turkey sandwich from ingredients on a tray

Video Friday is your weekly selection of awesome robotics videos, collected by your friends at IEEE Spectrum robotics. We also post a weekly calendar of upcoming robotics events for the next few months. Please send us your events for inclusion.

CoRL 2022: 14–18 December 2022, AUCKLAND, NEW ZEALAND

Enjoy today's videos!

Keep Reading ↓Show less

New AI Speeds Computer Graphics by Up to 5x

Neural rendering harnesses machine learning to paint pixels

5 min read
Four examples of Nvidia's Instant NeRF 2D-to-3D machine learning model placed side-by-side.

Nvidia Instant NeRF uses neural rendering to generate 3D visuals from 2D images.


On 20 September, Nvidia’s Vice President of Applied Deep Learning, Bryan Cantanzaro, went to Twitter with a bold claim: In certain GPU-heavy games, like the classic first-person platformer Portal, seven out of eight pixels on the screen are generated by a new machine-learning algorithm. That’s enough, he said, to accelerate rendering by up to 5x.

This impressive feat is currently limited to a few dozen 3D games, but it’s a hint at the gains neural rendering will soon deliver. The technique will unlock new potential in everyday consumer electronics.

Keep Reading ↓Show less

Designing Fuel Cell Systems Using System-Level Design

Modeling and simulation in Simulink and Simscape

1 min read
Designing Fuel Cell Systems Using System-Level Design

Design and simulate a fuel cell system for electric mobility. See by example how Simulink® and Simscape™ support multidomain physical modeling and simulation of fuel cell systems including thermal, gas, and liquid systems. Learn how to select levels of modeling fidelities to meet your needs at different development stages.