Digital Radio Takes to the Road

Radio broadcasting is being remade: satellite digital radio plays for a fee to moving vehicles, and terrestrial digital radio waits in the wings

16 min read
Illustration: Pierre-Yves Goavec
Illustration: Pierre-Yves Goavec

While the transition of television to a digital technology with its improved picture and sound quality has been a much publicized and controversial process, television's venerable ancestor, radio, has stayed in the background. But this year, in the United States, radio broadcasting is making its own digital leap. Two start-ups are introducing a new type of radio broadcast--subscription-based digital audio sent from satellites. With satellite digital audio radio services (SDARS), as they're called, listeners will be able to tune in to the same radio stations anywhere in the United States.

SDARS differs from so-called digital music services, in which direct broadcast satellite or cable system operators provide digitized and compressed audio over their networks, both because of its programming and because SDARS can be received in a moving car, where much of today's radio listening takes place; existing digital audio services cannot. (A different form of satellite digital radio, from WorldSpace Corp., Washington, D.C., is currently serving parts of Africa and Asia. It started service in 1999, and is less optimized for mobile use.)

Keep reading... Show less

Stay ahead of the latest trends in technology. Become an IEEE member.

This article is for IEEE members only. Join the world’s largest professional organization devoted to engineering and applied sciences and get access to all of Spectrum’s articles, podcasts, and special reports. Learn more →

Membership includes:

  • Get unlimited access to IEEE Spectrum content
  • Follow your favorite topics to create a personalized feed of IEEE Spectrum content
  • Save Spectrum articles to read later
  • Network with other technology professionals
  • Establish a professional profile
  • Create a group to share and collaborate on projects
  • Discover IEEE events and activities
  • Join and participate in discussions

Engineers Are Working on a Solar Microgrid to Outlast Lunar Nights

Future lunar bases will need power for mining and astronaut survival

4 min read
A rendering of a lunar base. In the foreground are rows of solar panels and behind them are two astronauts standing in front of a glass dome with plants inside.
P. Carril/ESA

The next time humans land on the moon, they intend to stay awhile. For the Artemis program, NASA and its collaborators want to build a sustained presence on the moon, which includes setting up a base where astronauts can live and work.

One of the crucial elements for a functioning lunar base is a power supply. Sandia National Laboratories, a research and development lab that specializes in building microgrids for military bases, is teaming up with NASA to design one that will work on the moon.

Keep Reading ↓ Show less

Trilobite-Inspired Camera Boasts Huge Depth of Field

New camera relies on “metalenses” that could be fabricated using a standard CMOS foundry

3 min read
Black and white image showing different white box shapes in rows

Scanning electron microscope image of the titanium oxide nanopillars that make up the metalens. The scale is 500 nanometers (nm).

NIST

Inspired by the eyes of extinct trilobites, researchers have created a miniature camera with a record-setting depth of field—the distance over which a camera can produce sharp images in a single photo. Their new study reveals that with the aid of artificial intelligence, their device can simultaneously image objects as near as 3 centimeters and as far away as 1.7 kilometers.

Five hundred million years ago, the oceans teemed with horseshoe-crab-like trilobites. Among the most successful of all early animals, these armored invertebrates lived on Earth for roughly 270 million years before going extinct.

Keep Reading ↓ Show less

Reduce EMI and EMC Issues with Engineering Simulation Software

Save time and money all while delivering accurate and reliable results

1 min read
Reduce EMI and EMC Issues with Engineering Simulation Software

Electronic components and systems exist today in nearly all consumer and industrial products. A major design consideration in all electronics is electromagnetic interference (EMI) and compatibility (EMC). EMI and EMC issues are complex. They can be hard to detect and can be taxing to a design. With the use of engineering simulation software, design engineers can mitigate issues before entering the prototype testing phase. Avoiding the test-retest cycle with simulation can help save time and money all while delivering robust and reliable products.