Diabetes Has a New Enemy: Robo-Pancreas

Sensors, actuators, and algorithms can automatically control blood sugar

9 min read
Photo of Brian Herrick
Blood Sugar, Online: Brian Herrick tracks the ups and downs of glucose in his bloodstream with a Dexcom system—a skin-hugging sensor that communicates via Bluetooth with a handheld monitor.
Photo: David Yellen

The first great wonder drug was insulin, the blood-sugar-regulating hormone that was isolated in Canada nearly a century ago. The before-and-after pictures still astound: a skeletal wraith on the left, a rosy-cheeked child on the right.

But the promise of insulin has yet to be fulfilled. Normally, the pancreas, an organ near the liver, secretes insulin to control the concentration of glucose in the blood. In patients with type 1 diabetes—once known as juvenile diabetes because it’s usually diagnosed in children—the pancreas makes no insulin of its own, so those with the disease must work hard to mimic that organ’s function. If blood sugar goes too low, the patient faints; if it goes too high, it poses long-term risks to the eyes, nerves, and arteries. So several times a day the patient must prick a finger to test blood sugar, make a calculation based on planned meals and exercise, and adjust the injection of insulin to account for it all. The burden of self-management goes on night and day.

Keep reading... Show less

Stay ahead of the latest trends in technology. Become an IEEE member.

This article is for IEEE members only. Join the world’s largest professional organization devoted to engineering and applied sciences and get access to all of Spectrum’s articles, podcasts, and special reports. Learn more →

Membership includes:

  • Get unlimited access to IEEE Spectrum content
  • Follow your favorite topics to create a personalized feed of IEEE Spectrum content
  • Save Spectrum articles to read later
  • Network with other technology professionals
  • Establish a professional profile
  • Create a group to share and collaborate on projects
  • Discover IEEE events and activities
  • Join and participate in discussions

DARPA Wants a Better, Badder Caspian Sea Monster

Liberty Lifter X-plane will leverage ground effect

4 min read
A rendering of a grey seaplane with twin fuselages and backwards-facing propellers
DARPA

Arguably, the primary job of any military organization is moving enormous amounts of stuff from one place to another as quickly and efficiently as possible. Some of that stuff is weaponry, but the vast majority are things that support that weaponry—fuel, spare parts, personnel, and so on. At the moment, the U.S. military has two options when it comes to transporting large amounts of payload. Option one is boats (a sealift), which are efficient, but also slow and require ports. Option two is planes (an airlift), which are faster by a couple of orders of magnitude, but also expensive and require runways.

To solve this, the Defense Advanced Research Projects Agency (DARPA) wants to combine traditional sealift and airlift with the Liberty Lifter program, which aims to “design, build, and flight test an affordable, innovative, and disruptive seaplane” that “enables efficient theater-range transport of large payloads at speeds far exceeding existing sea lift platforms.”

Keep Reading ↓ Show less
{"imageShortcodeIds":["29824201"]}

IEEE Spectrum Wins Six Neal Awards

The publication was recognized for its editorial excellence, website, and art direction

1 min read
A group of smiling people holding two award placards in front of a backdrop for the Jess H. Neal Awards

The IEEE editorial and art team show off two of their five awards.

Bruce Byers/SIIA

IEEE Spectrum garnered top honors at this year’s annual Jesse H. Neal Awards ceremony, held on 26 April. Known as the “Pulitzer Prizes” of business-to-business journalism, the Neal Awards recognize editorial excellence. The awards are given by the SIIA (Software and Information Industry Association).

For the fifth year in a row, IEEE Spectrum was awarded the Best Media Brand. The award is given for overall editorial excellence.

Keep Reading ↓ Show less

Modeling Microfluidic Organ-on-a-Chip Devices

Register for this webinar to enhance your modeling and design processes for microfluidic organ-on-a-chip devices using COMSOL Multiphysics

1 min read
Comsol Logo
Comsol

If you want to enhance your modeling and design processes for microfluidic organ-on-a-chip devices, tune into this webinar.

You will learn methods for simulating the performance and behavior of microfluidic organ-on-a-chip devices and microphysiological systems in COMSOL Multiphysics. Additionally, you will see how to couple multiple physical effects in your model, including chemical transport, particle tracing, and fluid–structure interaction. You will also learn how to distill simulation output to find key design parameters and obtain a high-level description of system performance and behavior.

Keep Reading ↓ Show less