The July 2022 issue of IEEE Spectrum is here!

Close bar

Royal Mail Is Doing the Right Thing With Drone Delivery

Drones are actually the best way of delivering mail to far-flung islands

2 min read
A large drone with twin propellers stands idle on a remote airport runway as a postal worker walks towards it with two large mail bags

Eight-ish years ago, back when drone delivery was more hype than airborne reality (even more so than it is now), DHL tested a fully autonomous delivery service that relied on drones to deliver packages to an island 12 kilometers off Germany’s North Sea coast. The other alternative for getting parcels to the island was a ferry. But because the ferry didn’t run every day, the drones filled the scheduling gaps so residents of the island could get important packages without having to wait.

“To the extent that it is technically feasible and economically sensible,” DHL said at the time, “the use of [drones] to deliver urgently needed goods to thinly populated or remote areas or in emergencies is an interesting option for the future.” We’ve seen Zipline have success with this approach; now, drones are becoming affordable and reliable enough that they’re starting to make sense for use cases that are slightly less urgent than blood and medication deliveries. Now, thinly populated or remote areas can benefit from drones even if they aren’t having an emergency. Case in point: The United Kingdom’s Royal Mail has announced plans to establish more than 50 new postal drone routes over the next three years.


The drones themselves come from Windracers Group, and they’re beefy, able to carry a payload of 100 kilograms up to 1,000 km with full autonomy. Pretty much everything on it ensures redundancy: a pair of engines, six separate control units, and backups for the avionics, communications, and ground control. Here’s an overview of a pilot (pilotless?) project from last year:

Subject to CAA approval and the ongoing planned improvement in UAV economics, Royal Mail is aiming to secure more than 50 drone routes supported by up to 200 drones over the next three years. Island communities across the Isles of Scilly, Shetland Islands, Orkney Islands, and the Hebrides would be the first to benefit. Longer term, the ambition is to deploy a fleet of more than 500 drones servicing all corners of the U.K.

“Corners” is the operative word here, and it’s being used more exclusively than inclusively—these islands are particularly inconvenient to get to, and drones really are the best way of getting regular, reliable mail delivery to these outposts in a cost-effective way. Other options are infrequent boats or even more infrequent large piloted aircraft. But when you consider the horrific relative expense of those modes of transportation, it’s hard for drones not to be cast in a favorable light. And when you want frequent service to a location such as Fair Isle, as shown in the video below, a drone is not only your best bet but also your only reasonable one—it flew 105 km in 40 minutes, fighting strong winds much of the way:

There’s still some work to be done to gain the approval of the U.K.’s Civil Aviation Authority. At this point, figuring out those airspace protections and safety regulations and all that stuff is likely more of an obstacle than the technical challenges that remain. But personally, I’m much more optimistic about use cases like the one Royal Mail is proposing here that I am about drone delivery of tacos or whatever to suburbanites, because the latter seems very much like a luxury, while the former is an essential service.

The Conversation (0)

The First Million-Transistor Chip: the Engineers’ Story

Intel’s i860 RISC chip was a graphics powerhouse

21 min read
Twenty people crowd into a cubicle, the man in the center seated holding a silicon wafer full of chips

Intel's million-transistor chip development team

In San Francisco on Feb. 27, 1989, Intel Corp., Santa Clara, Calif., startled the world of high technology by presenting the first ever 1-million-transistor microprocessor, which was also the company’s first such chip to use a reduced instruction set.

The number of transistors alone marks a huge leap upward: Intel’s previous microprocessor, the 80386, has only 275,000 of them. But this long-deferred move into the booming market in reduced-instruction-set computing (RISC) was more of a shock, in part because it broke with Intel’s tradition of compatibility with earlier processors—and not least because after three well-guarded years in development the chip came as a complete surprise. Now designated the i860, it entered development in 1986 about the same time as the 80486, the yet-to-be-introduced successor to Intel’s highly regarded 80286 and 80386. The two chips have about the same area and use the same 1-micrometer CMOS technology then under development at the company’s systems production and manufacturing plant in Hillsboro, Ore. But with the i860, then code-named the N10, the company planned a revolution.

Keep Reading ↓Show less
{"imageShortcodeIds":[]}