The December 2022 issue of IEEE Spectrum is here!

Close bar

Drone Startup to Fly Pallets Without Pilots

Dronamics will test a radical new vision of long-range cargo transport in Europe

3 min read
A large, black, propeller-driven drone stands in front of a warehouse

A Black Swan drone, from Dronamics, stands at the ready.


Delivering things by drone began as a stunt in 2012, when a model airplane dropped a burrito by parachute to a hungry customer waiting below. The concept then graduated, first to a proof-of-principle venture in Iceland using multicopters, then to a well-funded Amazon project in the United Kingdom. But these and similar attempts to solve the last-mile problem—the mile leading to the customer—have largely been disappointing. Amazon recently scaled back its drone-based delivery project in the U.K.

In 2022, Dronamics, a company based in London and Sofia, Bulgaria, will test-fly a drone in Europe that will carry far more than a mere burrito and over far longer distances. It addresses the less sexy but equally important middle-distance problem—the route that connects factories to warehouses. The point is to take a slice of business that’s now handled by regular air freight and by trucks—above all, the quick delivery of critical parts. If this service had been available a year or two ago, it might not have prevented the logistics logjam that now plagues the world, but it would have cleared away some of the more problematic bottlenecks.

Dronamics will run trials with its partners, including DHL and Hellmann Worldwide Logistics, in the hope of eventually fielding thousands of drones, each carrying as much as 350 kilograms of cargo up to 2,500 kilometers. The European Union has facilitated this sort of experimentation by instituting a single certification policy for drone aircraft. Once its aircraft are certified, Dronamics must get a route approved through one of the E.U.’s member countries; that done, it should be fairly easy to get other member countries to agree as well.

In October, Dronamics announced that it would use Malta as its base, with a view to connecting first to Italy and later to other Mediterranean countries.

One thing Dronamics doesn’t do is full-scale autonomy: Its planes do not detect and avoid obstacles. Instead, each flight is programmed in advance, in a purely deterministic way. Flights often take place in controlled airspace and always between drone ports that the company controls. Someone on the ground monitors the flight from afar, and if something unexpected arises, that person can redirect the plane.

“We operate like a proper airline, but we can intervene,” says Svilen Rangelov, the cofounder and CEO of Dronamics. “We’re looking for underserved airports, using time slots where there is no passenger traffic. In the United States there are 17,000 airports, but only about 400 are commercially used. The rest don’t have regular service at all.”

Unlike the multicopter burrito drones of years past, or even Amazon’s prototypes, these machines fly on fixed wings and are powered by internal combustion engines, the better to carry big loads long distances and to operate at off-the-grid airfields. “Anything less than 200 miles [about 320 kilometers] is not appropriate because, given the time to get to the airport, fly, and then pick up, you may as well truck it,” Rangelov says.

The company’s drone is called Black Swan, a phrase often used to describe important but unpredictable events. “That was precisely the reasoning” behind the name, Rangelov says, explaining what makes this drone so unique and rare. "We knew [the drone] had to be cheaper to produce and to operate than any existing models.”

The drone likely will not be carrying one pallet of the same things but multiple packages for many customers.

Because this vehicle is intended to transport cargo with no people on board, Dronamics could design the interior to fit cargo pallets. “It’s exactly the right cargo size for this business,” Rangelov says. “It likely will not be carrying one pallet of the same things but multiple packages for many customers.” And Dronamics claims it can carry cargo for half of what today’s air freighters charge.

Hellmann Worldwide Logistics sees a lot of potential for using Dronamics in Africa and other places with limited infrastructure. For now, though, the company is focused on the dense population, manageable distances, and supportive governmental institutions of Europe.

“Especially between north and south Europe—from Germany and Hungary, where there’s a lot of automotive business,” says Jan Kleine-Lasthues, Hellmann’s chief operating officer for air freight. There are also supply lines going into Italy that service the cruise ships on the Mediterranean Sea, he says, and fresh fish would be ideal cargo. Indeed, Dronamics is working on a temperature-controlled container.

What effect would massive fleets of such drones have had on today’s supply-chain problems? “It could help,” he says. “If the container isn’t arriving with production material, we could use drones to keep production alive. But it’s not replacing the big flow—it’s just a more flexible, more agile mode of transport.”

Before cargo drones darken the skies, though, Hellmann wants to see how the rollout goes.

“First of all, we want to try it,” Kleine-Lasthues says. “One use case is replacing commercial air freight—for example, Frankfurt to Barcelona by drone; also, there’s a use case replacing vans. If it is working, I think it can be quickly ramped up. The question is how fast can Dronamics add capacity to the market.”

This article appears in the January 2022 print issue as “Flying Pallets Without Pilots.”

The Conversation (0)

IEEE President’s Note: Looking to 2050 and Beyond

The importance of future-proofing IEEE

4 min read
Photo of K. J. Ray Liu

What will the future of the world look like? Everything in the world evolves. Therefore, IEEE also must evolve, not only to survive but to thrive.

How will people build communities and engage with one another and with IEEE in the future? How will knowledge be acquired? How will content be curated, shared, and accessed? What issues will influence the development of technical standards? How should IEEE be organized to be most impactful?

Keep Reading ↓Show less

The Device That Changed Everything

Transistors are civilization’s invisible infrastructure

2 min read
A triangle of material suspended above a base

This replica of the original point-contact transistor is on display outside IEEE Spectrum’s conference rooms.

Randi Klett

I was roaming around the IEEE Spectrum office a couple of months ago, looking at the display cases the IEEE History Center has installed in the corridor that runs along the conference rooms at 3 Park. They feature photos of illustrious engineers, plaques for IEEE milestones, and a handful of vintage electronics and memorabilia including an original Sony Walkman, an Edison Mazda lightbulb, and an RCA Radiotron vacuum tube. And, to my utter surprise and delight, a replica of the first point-contact transistor invented by John Bardeen, Walter Brittain, and William Shockley 75 years ago this month.

I dashed over to our photography director, Randi Klett, and startled her with my excitement, which, when she saw my discovery, she understood: We needed a picture of that replica, which she expertly shot and now accompanies this column.

Keep Reading ↓Show less

Designing Fuel Cell Systems Using System-Level Design

Modeling and simulation in Simulink and Simscape

1 min read
Designing Fuel Cell Systems Using System-Level Design

Design and simulate a fuel cell system for electric mobility. See by example how Simulink® and Simscape™ support multidomain physical modeling and simulation of fuel cell systems including thermal, gas, and liquid systems. Learn how to select levels of modeling fidelities to meet your needs at different development stages.