How We Won the DARPA SubT Challenge: Urban Circuit Virtual Track

Michigan Tech Research Institute’s Team BARCS on winning the Virtual Urban Circuit of the DARPA SubT Challenge

12 min read
SubT Virtual Track
Image: Michigan Tech Research Institute

This is a guest post. The views expressed here are those of the authors and do not necessarily represent positions of IEEE or its organizational units.

“Do you smell smoke?" It was three days before the qualification deadline for the Virtual Tunnel Circuit of the DARPA Subterranean Challenge Virtual Track, and our team was barrelling through last-minute updates to our robot controllers in a small conference room at the Michigan Tech Research Institute (MTRI) offices in Ann Arbor, Mich. That's when we noticed the smell. We'd assumed that one of the benefits of entering a virtual disaster competition was that we wouldn't be exposed to any actual disasters, but equipment in the basement of the building MTRI shares had started to smoke. We evacuated. The fire department showed up. And as soon as we could, the team went back into the building, hunkered down, and tried to make up for the unexpected loss of several critical hours.

Team BARCS joins the SubT Virtual Track

The smoke incident happened more than a year after we first learned of the DARPA Subterranean Challenge. DARPA announced SubT early in 2018, and at that time, we were interested in building internal collaborations on multi-agent autonomy problems, and SubT seemed like the perfect opportunity. Though a few of us had backgrounds in robotics, the majority of our team was new to the field. We knew that submitting a proposal as a largely non-traditional robotics team from an organization not known for research in robotics was a risk. However, the Virtual Track gave us the opportunity to focus on autonomy and multi-agent teaming strategies, areas requiring skill in asynchronous computing and sensor data processing that are strengths of our Institute. The prevalence of open source code, small inexpensive platforms, and customizable sensors has provided the opportunity for experts in fields other than robotics to apply novel approaches to robotics problems. This is precisely what makes the Virtual Track of SubT appealing to us, and since starting SubT, autonomy has developed into a significant research thrust for our Institute. Plus, robots are fun!

After many hours of research, discussion, and collaboration, we submitted our proposal early in 2018. And several months later, we found out that we had won a contract and became a funded team (Team BARCS) in the SubT Virtual Track. Now we needed to actually make our strategy work for the first SubT Tunnel Circuit competition, taking place in August of 2019.

Building a team of virtual robots

A natural approach to robotics competitions like SubT is to start with the question of “what can X-type robot do" and then build a team and strategy around individual capabilities. A particular challenge for the SubT Virtual Track is that we can't design our own systems; instead, we have to choose from a predefined set of simulated robots and sensors that DARPA provides, based on the real robots used by Systems Track teams. Our approach is to look at what a team of robots can do together, determining experimentally what the best team configuration is for each environment. By the final competition, ideally we will be demonstrating the value of combining platforms across multiple Systems Track teams into a single Virtual Track team. Each of the robot configurations in the competition has an associated cost, and team size is constrained by a total cost. This provides another impetus for limiting dependence on complex sensor packages, though our ranging preference is 3D lidar, which is the most expensive sensor!

Team BARCS at SubTThe teams can rely on realistic physics and sensors but they start off with no maps of any kind, so the focus is on developing autonomous exploratory behavior, navigation methods, and object recognition for their simulated robots.Image: Michigan Tech Research Institute

One of the frequent questions we receive about the Virtual Track is if it's like a video game. While it may look similar on the surface, everything under the hood in a video game is designed to service the game narrative and play experience, not require novel research in AI and autonomy. The purpose of simulations, on the other hand, is to include full physics and sensor models (including noise and errors) to provide a testbed for prototyping and developing solutions to those real-world challenges. We are starting with realistic physics and sensors but no maps of any kind, so the focus is on developing autonomous exploratory behavior, navigation methods, and object recognition for our simulated robots.

Though the simulation is more like real life than a video game, it is not real life. Due to occasional software bugs, there are still non-physical events, like the robots falling through an invisible hole in the world or driving through a rock instead of over it or flipping head over heels when driving over a tiny lip between world tiles. These glitches, while sometimes frustrating, still allow the SubT Virtual platform to be realistic enough to support rapid prototyping of controller modules that will transition straightforwardly onto hardware, closing the loop between simulation and real-world robots.

Full autonomy for DARPA-hard scenarios

The Virtual Track requirement that the robotic agents be fully autonomous, rather than have a human supervisor, is a significant distinction between the Systems and Virtual Tracks of SubT. Our solutions must be hardened against software faults caused by things like missing and bad data since our robots can't turn to us for help. In order for a team of robots to complete this objective reliably with no human-in-the-loop, all of the internal systems, from perception to navigation to control to actuation to communications, must be able to autonomously identify and manage faults and failures anywhere in the control chain.

The communications limitations in subterranean environments (both real and virtual) mean that we need to keep the amount of information shared between robots low, while making the usability of that information for joint decision-making high. This goal has guided much of our design for autonomous navigation and joint search strategy for our team. For example, instead of sharing the full SLAM map of the environment, our agents only share a simplified graphical representation of the space, along with data about frontiers it has not yet explored, and are able to merge its information with the graphs generated by other agents. The merged graph can then be used for planning and navigation without having full knowledge of the detailed 3D map.

The Virtual Track requires that the robotic agents be fully autonomous. With no human-in-the-loop, all of the internal systems, from perception to navigation to control to actuation to communications, must be able to identify and manage faults and failures anywhere in the control chain.

Since the objective of the SubT program is to advance the state-of-the-art in rapid autonomous exploration and mapping of subterranean environments by robots, our first software design choices focused on the mapping task. The SubT virtual environments are sufficiently rich as to provide interesting problems in building so-called costmaps that accurately separate obstructions that are traversable (like ramps) from legitimately impassible obstructions. An extra complication we discovered in the first course, which took place in mining tunnels, was that the angle of the lowest beam of the lidar was parallel to the down ramps in the tunnel environment, so they could not “see" the ground (or sometimes even obstructions on the ramp) until they got close enough to the lip of the ramp to receive lidar reflections off the bottom of the ramp. In this case, we had to not only change the costmap to convince the robot that there was safe ground to reach over the lip of the ramp, but also had to change the path planner to get the robot to proceed with caution onto the top of the ramp in case there were previously unseen obstructions on the ramp.

In addition to navigation in the costmaps, the robot must be able to generate its own goals to navigate to. This is what produces exploratory behavior when there is no map to start with. SLAM is used to generate a detailed map of the environment explored by a single robot—the space it has probed with its sensors. From the sensor data, we are able to extract information about the interior space of the environment while looking for holes in the data, to determine things like whether the current tunnel continues or ends, or how many tunnels meet at an intersection. Once we have some understanding of the interior space, we can place navigation goals in that space. These goals naturally update as the robot traverses the tunnel, allowing the entire space to be explored.

Sending our robots into the virtual unknown

The solutions for the Virtual Track competitions are tested by DARPA in multiple sequestered runs across many environments for each Circuit in the month prior to the Systems Track competition. We must wait until the joint award ceremony at the conclusion of the Systems Track to find out the results, and we are completely in the dark about placings before the awards are announced. It's nerve-wracking! The challenges of the worlds used in the Circuit events are also hand-designed, so features of the worlds we use for development could be combined in ways we have not anticipated—it's always interesting to see what features were prioritized after the event. We test everything in our controllers well enough to feel confident that we at least are submitting something reasonably stable and broadly capable, and once the solution is in, we can't really do anything other than “let go" and get back to work on the next phase of development. Maybe it's somewhat like sending your kid to college: “we did our best to prepare you for this world, little bots. Go do good."

Team BARCS at SubTThe first SubT competition was the Tunnel Circuit, featuring a labyrinthine environment that simulated human-engineered tunnels, including hazards such as vertical shafts and rubble.Image: Michigan Tech Research Institute

The first competition was the Tunnel Circuit, in October 2019. This environment models human-engineered tunnels. Two substantial challenges in this environment were vertical shafts and rubble. Our team accrued 21 points over 15 competition runs in five separate tunnel environments for a second place finish, behind Team Coordinated Robotics.

The next phase of the SubT virtual competition was the Urban Circuit. Much of the difference between our Tunnel and Urban Circuit results came down to thorough testing to identify failure modes and implementations of checks and data filtering for fault tolerance. For example, in the SLAM nodes run by a single robot, the coordinates of the most recent sensor data are changed multiple times during processing and integration into the current global 3D map of the “visited" environment stored by that robot. If there is lag in IMU or clock data, the observation may be temporarily registered at a default location that is very far from the actual position. Since most of our decision processes for exploration are downstream from SLAM, this can cause faulty or impossible goals to be generated, and the robots then spend inordinate amounts of time trying to drive through walls. We updated our method to add a check to see if the new map position has jumped a far distance from the prior map position, and if so, we threw that data out.

Team BARCS at SubTIn open spaces like the rooms in the Urban circuit, we adjusted our approach to exploration through graph generation to allow the robots to accurately identify viable routes while helping to prevent forays off platform edges.Image: Michigan Tech Research Institute

Our approach to exploration through graph generation based on identification of interior spaces allowed us to thoroughly explore the centers of rooms, although we did have to make some changes from the Tunnel circuit to achieve that. In the Tunnel circuit, we used a simplified graph of the environment based on landmarks like intersections. The advantage of this approach is that it is straightforward for two robots to compare how the graphs of the space they explored individually overlap. In open spaces like the rooms in the Urban circuit, we chose to instead use a more complex, less directly comparable graph structure based on the individual robot's trajectory. This allowed the robots to accurately identify viable routes between features like subway station platforms and subway tracks, as well as to build up the navigation space for room interiors, while helping to prevent forays off the platform edges. Frontier information is also integrated into the graph, providing a uniform data structure for both goal selection and route planning.

The results are in!

The award ceremony for the Urban Circuit was held concurrently with the Systems Track competition awards this past February in Washington State. We sent a team representative to participate in the Technical Interchange Meeting and present the approach for our team, and the rest of us followed along from our office space on the DARPAtv live stream. While we were confident in our solution, we had also been tracking the online leaderboard and knew our competitors were going to be submitting strong solutions. Since the competition environments are hand-designed, there are always novel challenges that could be presented in these environments as well. We knew we would put up a good fight, but it was very exciting to see BARCS appear in first place!

Any time we implement a new module in our control system, there is a lot of parameter tuning that has to happen to produce reliably good autonomous behavior. In the Urban Circuit, we did not sufficiently test some parameter values in our exploration modules. The effect of this was that the robots only chose to go down small hallways after they explored everything else in their environment, which meant very often they ran out of time and missed a lot of small rooms. This may be the biggest source of lost points for us in the Urban Circuit. One of our major plans going forward from the Urban Circuit is to integrate more sophisticated node selection methods, which can help our robots more intelligently prioritize which frontier nodes to visit. By going through all three Circuit challenges, we will learn how to appropriately add weights to the frontiers based on features of the individual environments. For the Final Challenge, when all three Circuit environments will be combined into large systems, we plan to implement adaptive controllers that will identify their environments and use the appropriate optimized parameters for that environment. In this way, we expect our agents to be able to (for example) prioritize hallways and other small spaces in Urban environments, and perhaps prioritize large openings over small in the Cave environments, if the small openings end up being treacherous overall.

Next for our team: Cave Circuit

Coming up next for Team BARCS is the Virtual Cave Circuit. We are in the middle of testing our hypothesis that our controller will transition from UGVs to UAVs and developing strategies for refining our solution to handle Cave Circuit environmental hazards. The UAVs have a shorter battery life than the UGVs, so executing a joint exploration strategy will also be a high priority for this event, as will completing our work on graph sharing and merging, which will give our robot teams more sophisticated options for navigation and teamwork. We're reaching a threshold in development where we can start increasing the “smarts" of the robots, which we anticipate will be critical for the final competition, where all of the challenges of SubT will be combined to push the limits of innovation. The Cave Circuit will also have new environmental challenges to tackle: dynamic features such as rock falls have been added, which will block previously accessible passages in the cave environment. We think our controllers are well-poised to handle this new challenge, and we're eager to find out if that's the case.

As of now, the biggest worries for us are time and team composition. The Cave Circuit deadline has been postponed to October 15 due to COVID-19 delays, with the award ceremony in mid-November, but there have also been several very compelling additions to the testbed that we would like to experiment with before submission, including droppable networking 'breadcrumbs' and new simulated platforms. There are design trade-offs when balancing general versus specialist approaches to the controllers for these robots—since we are adding UAVs to our team for the first time, there are new decisions that will have to be made. For example, the UAVs can ascend into vertical spaces, but only have a battery life of 20 minutes. The UGVs by contrast have 90 minute battery life. One of our strategies is to do an early return to base with one or more agents to buy down risk on making any artifact reports at all for the run, hedging against our other robots not making it back in time, a lesson learned from the Tunnel Circuit. Should a UAV take on this role, or is it better to have them explore deeper into the environment and instead report their artifacts to a UGV or network node, which comes with its own risks? Testing and experimentation to determine the best options takes time, which is always a worry when preparing for a competition! We also anticipate new competitors and stiffer competition all around.

Team BARCS at SubTTeam BARCS has now a year to prepare for the final DARPA SubT Challenge event, expected to take place in late 2021.Image: Michigan Tech Research Institute

Going forward from the Cave Circuit, we will have a year to prepare for the final DARPA SubT Challenge event, expected to take place in late 2021. What we are most excited about is increasing the level of intelligence of the agents in their teamwork and joint exploration of the environment. Since we will have (hopefully) built up robust approaches to handling each of the specific types of environments in the Tunnel, Urban, and Cave circuits, we will be aiming to push the limits on collaboration and efficiency among the agents in our team. We view this as a central research contribution of the Virtual Track to the Subterranean Challenge because intelligent, adaptive, multi-robot collaboration is an upcoming stage of development for integration of robots into our lives.

The Subterranean Challenge Virtual Track gives us a bridge for transitioning our more abstract research ideas and algorithms relevant to this degree of autonomy and collaboration onto physical systems, and exploring the tangible outcomes of implementing our work in the real world. And the next time there's an incident in the basement of our building, the robots (and humans) of Team BARCS will be ready to respond.

This material is based upon work supported by the Defense Advanced Research Projects Agency (DARPA) under Contract No. HR001118C0124 and is released under Distribution Statement (Approved for Public Release, Distribution Unlimited). Any opinions, findings and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of DARPA.

The Conversation (0)

The Bionic-Hand Arms Race

The prosthetics industry is too focused on high-tech limbs that are complicated, costly, and often impractical

12 min read
Horizontal
A photograph of a young woman with brown eyes and neck length hair dyed rose gold sits at a white table. In one hand she holds a carbon fiber robotic arm and hand. Her other arm ends near her elbow. Her short sleeve shirt has a pattern on it of illustrated hands.

The author, Britt Young, holding her Ottobock bebionic bionic arm.

Gabriela Hasbun. Makeup: Maria Nguyen for MAC cosmetics; Hair: Joan Laqui for Living Proof
DarkGray

In Jules Verne’s 1865 novel From the Earth to the Moon, members of the fictitious Baltimore Gun Club, all disabled Civil War veterans, restlessly search for a new enemy to conquer. They had spent the war innovating new, deadlier weaponry. By the war’s end, with “not quite one arm between four persons, and exactly two legs between six,” these self-taught amputee-weaponsmiths decide to repurpose their skills toward a new projectile: a rocket ship.

The story of the Baltimore Gun Club propelling themselves to the moon is about the extraordinary masculine power of the veteran, who doesn’t simply “overcome” his disability; he derives power and ambition from it. Their “crutches, wooden legs, artificial arms, steel hooks, caoutchouc [rubber] jaws, silver craniums [and] platinum noses” don’t play leading roles in their personalities—they are merely tools on their bodies. These piecemeal men are unlikely crusaders of invention with an even more unlikely mission. And yet who better to design the next great leap in technology than men remade by technology themselves?

Keep Reading ↓Show less