The February 2023 issue of IEEE Spectrum is here!

Close bar

Computing the Neanderthal Genome

New software helped decode the DNA of our stone-age cousins

3 min read

Reconstructing cavemen from bits of fossil DNA is still the stuff of science fiction. But thanks to high-powered computing wizardry, we now have the blueprints you’d need to do it. An international team of scientists published the first draft of the Neanderthal genome in the journal Science on 7 May. The study showed, somewhat surprisingly, that early humans and Neanderthals interbred and that 1 to 4 percent of the DNA in modern Asians and Europeans comes from Neanderthals.

The bulk of the credit for decoding the Neanderthal goes to high-throughput sequencing technologies developed in the past five years, which turned bits of ancient DNA into millions of short strings of letters. But sequencing the Neanderthal genome would have been impossible without the sophisticated software that put all those millions of strings together in the right order.

Keep Reading ↓Show less

This article is for IEEE members only. Join IEEE to access our full archive.

Join the world’s largest professional organization devoted to engineering and applied sciences and get access to all of Spectrum’s articles, podcasts, and special reports. Learn more →

If you're already an IEEE member, please sign in to continue reading.

Membership includes:

  • Get unlimited access to IEEE Spectrum content
  • Follow your favorite topics to create a personalized feed of IEEE Spectrum content
  • Save Spectrum articles to read later
  • Network with other technology professionals
  • Establish a professional profile
  • Create a group to share and collaborate on projects
  • Discover IEEE events and activities
  • Join and participate in discussions

An IBM Quantum Computer Will Soon Pass the 1,000-Qubit Mark

The Condor processor is just one quantum-computing advance slated for 2023

4 min read
This photo shows a woman working on a piece of apparatus that is suspended from the ceiling of the laboratory.

A researcher at IBM’s Thomas J. Watson Research Center examines some of the quantum hardware being constructed there.

Connie Zhou/IBM

IBM’s Condor, the world’s first universal quantum computer with more than 1,000 qubits, is set to debut in 2023. The year is also expected to see IBM launch Heron, the first of a new flock of modular quantum processors that the company says may help it produce quantum computers with more than 4,000 qubits by 2025.

This article is part of our special report Top Tech 2023.

While quantum computers can, in theory, quickly find answers to problems that classical computers would take eons to solve, today’s quantum hardware is still short on qubits, limiting its usefulness. Entanglement and other quantum states necessary for quantum computation are infamously fragile, being susceptible to heat and other disturbances, which makes scaling up the number of qubits a huge technical challenge.

Keep Reading ↓Show less