Can You Trust Your Car?

As cars become computers on wheels, they had better become more reliable than our desktop models

11 min read

Carmakers are spending more on silicon these days, as electronics and software spread throughout motor vehicles, from underhood control units to driver information systems and rear-seat entertainment modules. It is now estimated that the cost of the electronics in a new car rises by 9-16 percent each year. In the 2001 model year, electronics accounted for 19 percent of a mid-sized vehicle's cost. In the year 2005, it may be 25 percent for mid-sized cars and possibly 50 percent for luxury models.

So in addition to being pervasive, automotive electronics had better be reliable. The failure of a 10-cent part can ruin a US $30 000 car purchase. Failures in braking and steering can cause injury or death. Servicing a system buried deep within a car is costly. And designers of automotive systems must be prepared for users who give the product almost zero maintenance. "It's not like aviation or aerospace, where you have human eyes looking at it after every few hours of operation," said Patrick Lincoln, director of the Computer Science Laboratory at SRI International (Menlo Park, Calif.). Now, in fact, the shoe is on the other foot, with aircraft makers eyeing mass-produced automotive databuses and other advanced technologies for possible avionics use.

Keep reading...Show less

This article is for IEEE members only. Join IEEE to access our full archive.

Join the world’s largest professional organization devoted to engineering and applied sciences and get access to all of Spectrum’s articles, podcasts, and special reports. Learn more →

If you're already an IEEE member, please sign in to continue reading.

Membership includes:

  • Get unlimited access to IEEE Spectrum content
  • Follow your favorite topics to create a personalized feed of IEEE Spectrum content
  • Save Spectrum articles to read later
  • Network with other technology professionals
  • Establish a professional profile
  • Create a group to share and collaborate on projects
  • Discover IEEE events and activities
  • Join and participate in discussions

Video Friday: Turkey Sandwich

Your weekly selection of awesome robot videos

4 min read
A teleoperated humanoid robot torso stands in a kitchen assembling a turkey sandwich from ingredients on a tray

Video Friday is your weekly selection of awesome robotics videos, collected by your friends at IEEE Spectrum robotics. We also post a weekly calendar of upcoming robotics events for the next few months. Please send us your events for inclusion.

CoRL 2022: 14–18 December 2022, AUCKLAND, NEW ZEALAND

Enjoy today's videos!

Keep Reading ↓Show less

New AI Speeds Computer Graphics by Up to 5x

Neural rendering harnesses machine learning to paint pixels

5 min read
Four examples of Nvidia's Instant NeRF 2D-to-3D machine learning model placed side-by-side.

Nvidia Instant NeRF uses neural rendering to generate 3D visuals from 2D images.


On 20 September, Nvidia’s Vice President of Applied Deep Learning, Bryan Cantanzaro, went to Twitter with a bold claim: In certain GPU-heavy games, like the classic first-person platformer Portal, seven out of eight pixels on the screen are generated by a new machine-learning algorithm. That’s enough, he said, to accelerate rendering by up to 5x.

This impressive feat is currently limited to a few dozen 3D games, but it’s a hint at the gains neural rendering will soon deliver. The technique will unlock new potential in everyday consumer electronics.

Keep Reading ↓Show less

Solving Automotive Design Challenges With Simulation

Learn about low-frequency electromagnetic simulations and see a live demonstration of COMSOL Multiphysics software

1 min read

The development of new hybrid and battery electric vehicles introduces numerous design challenges. Many of these challenges are static or low-frequency electromagnetic by nature, as the devices involved in such designs are much smaller than the operating wavelength. Examples include sensors (such as MEMS sensors), transformers, and motors. Many of these challenges include multiple physics. For instance, sensors activated by acoustic energy as well as heat transfer in electric motors and power electronics combine low-frequency electromagnetic simulations with acoustic and heat transfer simulations, respectively.

Multiphysics simulation makes it possible to account for such phenomena in designs and can provide design engineers with the tools needed for developing products more effectively and optimizing device performance.

Keep Reading ↓Show less