The August 2022 issue of IEEE Spectrum is here!

Close bar

Artificial Retina Impresses, But Is It Nanotechnology?

Nanoelectrodes seem to form the basis of artificial retina technology; we just don't know much about them

1 min read
Artificial Retina Impresses, But Is It Nanotechnology?

The Wall Street Journal’s online magazine Market Watchrecently ran a story on two new approaches to overcoming degenerative eye diseases with artificial retinas.

The story came across my desk by virtue of the fact that one of the companies goes by the name Nano Retina. The Israel-based company is a joint venture between Rainbow Medical and Zyvex Labs, the latter being well known for its work in nanotechnology and its founder Jim Von Ehr, who has been a strong proponent of molecular mechanosynthesis.

Both Nano Retina’s and its competitor Second Sight’s approaches to providing a solution to disease-caused blindness impressed me. And the Wall Street Journal article expressed intrigue that "the number of blind persons in the U.S. is projected to increase by 70 percent, to 1.6 million by 2020, with a similar rise projected for low vision," according to a 2004 paper prepared by a research group led by a Johns Hopkins University professor, Nathan Congdon. In other words, it's a growth sector, which always pleases investors.

But I wanted to know where the nanotechnology was in the “Nano” Retina. Finding out turned out not to be an easy task. There was the video from the company Web site below, which explained that the implantable device contained “nanoelectrodes.”

[youtube //www.youtube.com/v/aeD7e0QfD2c&rel=0&hl=en_US&feature=player_embedded&version=3 expand=1]

The written information on the company did not shine any further light on the subject. The video does seem to claim some pretty amazing capabilities for these nanoelectrodes. Apparently, they “interface with the eye’s bipolar neurons” and restart neural stimulation, allowing for messages to go to the brain.

I have to confess I would like to know more, but I’m sure this is all highly proprietary information for a company that doesn’t expect to start clinical trials until 2013.

The Conversation (0)

The First Million-Transistor Chip: the Engineers’ Story

Intel’s i860 RISC chip was a graphics powerhouse

21 min read
Twenty people crowd into a cubicle, the man in the center seated holding a silicon wafer full of chips

Intel's million-transistor chip development team

In San Francisco on Feb. 27, 1989, Intel Corp., Santa Clara, Calif., startled the world of high technology by presenting the first ever 1-million-transistor microprocessor, which was also the company’s first such chip to use a reduced instruction set.

The number of transistors alone marks a huge leap upward: Intel’s previous microprocessor, the 80386, has only 275,000 of them. But this long-deferred move into the booming market in reduced-instruction-set computing (RISC) was more of a shock, in part because it broke with Intel’s tradition of compatibility with earlier processors—and not least because after three well-guarded years in development the chip came as a complete surprise. Now designated the i860, it entered development in 1986 about the same time as the 80486, the yet-to-be-introduced successor to Intel’s highly regarded 80286 and 80386. The two chips have about the same area and use the same 1-micrometer CMOS technology then under development at the company’s systems production and manufacturing plant in Hillsboro, Ore. But with the i860, then code-named the N10, the company planned a revolution.

Keep Reading ↓Show less
{"imageShortcodeIds":[]}