The December 2022 issue of IEEE Spectrum is here!

Close bar

Are Hybrid Vehicles Worth It?

Despite superior fuel economy and low emissions, HEVs cost too much at present to make economic sense

9 min read
Are Hybrid Vehicles Worth It?

To a vice president of R&D, a chief financial officer looks like Oscar Wilde's cynic--someone who knows the price of everything and the value of nothing. So it is probably a good thing that those financial officers are not in charge of determining most companies' R&D agendas. If they were, their cost analyses would condemn the majority of projects as unlikely to meet the companies' desired return on investment, and the world might be without such modern marvels as disk drives and cell phones.

Sometimes, however, the bean counters get it right, as with the battery-powered cars built by General Motors Corp., the EV1, and Toyota Corp., the RAV4 EV. Both companies have discontinued manufacturing those "pure electric" (powered by batteries only) vehicles after investing nearly half a billion dollars in R&D and millions more in promotion and subsidies. The cars simply failed to find a market.

Keep reading...Show less

This article is for IEEE members only. Join IEEE to access our full archive.

Join the world’s largest professional organization devoted to engineering and applied sciences and get access to all of Spectrum’s articles, podcasts, and special reports. Learn more →

If you're already an IEEE member, please sign in to continue reading.

Membership includes:

  • Get unlimited access to IEEE Spectrum content
  • Follow your favorite topics to create a personalized feed of IEEE Spectrum content
  • Save Spectrum articles to read later
  • Network with other technology professionals
  • Establish a professional profile
  • Create a group to share and collaborate on projects
  • Discover IEEE events and activities
  • Join and participate in discussions

Paying Tribute to 1997 IEEE President Charles K. Alexander

The Life Fellow was a professor at Cleveland State University

4 min read
portrait of man smiling against a light background
The Alexander Family

Charles K. Alexander, 1997 IEEE president, died on 17 October at the age of 79.

The active volunteer held many high-level positions throughout the organization, including 1991–1992 IEEE Region 2 director. He was also the 1993 vice president of the IEEE United States Activities Board (now IEEE-USA).

Keep Reading ↓Show less

Robot Learns Human Trick for Not Falling Over

Humanoid limbs are useful for more than just manipulation

3 min read
A black and white humanoid robot with a malfunctioning leg supports itself with one arm against a wall

This article is part of our exclusive IEEE Journal Watch series in partnership with IEEE Xplore.

Humanoid robots are a lot more capable than they used to be, but for most of them, falling over is still borderline catastrophic. Understandably, the focus has been on getting humanoid robots to succeed at things as opposed to getting robots to tolerate (or recover from) failing at things, but sometimes, failure is inevitable because stuff happens that’s outside your control. Earthquakes, accidentally clumsy grad students, tornadoes, deliberately malicious grad students—the list goes on.

When humans lose their balance, the go-to strategy is a highly effective one: use whatever happens to be nearby to keep from falling over. While for humans this approach is instinctive, it’s a hard problem for robots, involving perception, semantic understanding, motion planning, and careful force control, all executed under aggressive time constraints. In a paper published earlier this year in IEEE Robotics and Automation Letters, researchers at Inria in France show some early work getting a TALOS humanoid robot to use a nearby wall to successfully keep itself from taking a tumble.

Keep Reading ↓Show less

Solving Automotive Design Challenges With Simulation

Learn about low-frequency electromagnetic simulations and see a live demonstration of COMSOL Multiphysics software

1 min read

The development of new hybrid and battery electric vehicles introduces numerous design challenges. Many of these challenges are static or low-frequency electromagnetic by nature, as the devices involved in such designs are much smaller than the operating wavelength. Examples include sensors (such as MEMS sensors), transformers, and motors. Many of these challenges include multiple physics. For instance, sensors activated by acoustic energy as well as heat transfer in electric motors and power electronics combine low-frequency electromagnetic simulations with acoustic and heat transfer simulations, respectively.

Multiphysics simulation makes it possible to account for such phenomena in designs and can provide design engineers with the tools needed for developing products more effectively and optimizing device performance.

Keep Reading ↓Show less