The February 2023 issue of IEEE Spectrum is here!

Close bar

All Aboard the Robotic Road Train

Semiautonomous cars will play follow the leader, giving drivers a rest and saving fuel

10 min read
Illustration of cars
Illustration: Tavis Coburn

In car commercials, every road is clear and curvy, every vista is framed by mountains and the sea, and every driver is relaxed and in the moment. In real life, though, driving is often as much a pain as it is a pleasure—a car, once a symbol of independence, is now perhaps the last place where you can’t use your smartphone. Even when the roads aren’t clogged, you must be constantly alert because, let’s face it—too many other drivers are inattentive or downright maniacal (characteristics that never apply to you, of course!). Public transportation has its own drawbacks: Buses and trains don’t start at your home and don’t end at your destination, nor do they leave just when you’d like or even guarantee you a seat.

To get the best of both worlds, we could teach our cars to work together, as closely grouped cyclists do in a peloton. The lead car could be entrusted to a professional driver to whom the other drivers would of course each pay a small fee; all the other cars would follow it automatically. The cars would all use networked communications coupled with the optical or electromagnetic sensors already installed in some luxury cars to avoid head-on collision, stay in the proper lane, and brake in case of emergency. These systems have been developed at great expense to provide active safety, as distinguished from the passive kind afforded by seat belts. But this investment, having been made, can now be exploited for other things—like allowing you to relax and read the paper. If only we’d let them.

Keep reading...Show less

This article is for IEEE members only. Join IEEE to access our full archive.

Join the world’s largest professional organization devoted to engineering and applied sciences and get access to all of Spectrum’s articles, podcasts, and special reports. Learn more →

If you're already an IEEE member, please sign in to continue reading.

Membership includes:

  • Get unlimited access to IEEE Spectrum content
  • Follow your favorite topics to create a personalized feed of IEEE Spectrum content
  • Save Spectrum articles to read later
  • Network with other technology professionals
  • Establish a professional profile
  • Create a group to share and collaborate on projects
  • Discover IEEE events and activities
  • Join and participate in discussions

Cosmic Rays Can Now 3D Scan Nuclear Reactors

Harnessing massive, electron-like particles to analyze the safety of aging power plants

3 min read
CAD drawings of a nuclear reactor.

The G2 reactor is seen in CAD full view, and cross sections.

Sébastien Procureur/Universite Paris-Saclay/Science Advances

Cosmic rays from deep space can help 3D scan nuclear reactors, peering inside to see if they are safe, a new study finds.

When high-energy particles known as cosmic rays hit Earth’s atmosphere, they can generate massive cousins of electrons known as muons. Muons constantly bombard Earth’s surface from every angle—roughly one muon hits every square centimeter of Earth every minute at sea level.

Keep Reading ↓Show less

Bosch Powers the Automotive Sector Toward an Electrified Future

The German company has optimized three-phase inverters and their DC link capacitors with a simulation-powered design process

8 min read
Digital art showing a 3D transparent car with the electric engine connected to batteries.

The global transition toward electric cars is getting a boost from industry suppliers like Robert Bosch, which provides electrical components and systems to car manufacturers. The Bosch team optimizes three-phase inverters and their DC link capacitors with a simulation-powered design process, which enables them to identify potentially destructive "hot spots" early in the development cycle.

This sponsored article is brought to you by COMSOL.

Just as tourists in Paris are drawn to the Louvre, visitors to Stuttgart, Germany, also flock to museums displaying the great works of the city. Stuttgart may not boast of Degas or Monet, but its prominent names are perhaps even more famous than Paris’ painters: Mercedes–Benz and Porsche. Each of these iconic automakers maintains a museum in the southwestern German city they call home. Their gleaming galleries feature many historic and influential cars, almost all of them powered by petroleum-fueled internal combustion (IC) engines. Looking ahead, Stuttgart will likely continue to be the heart of the German auto industry, but how long will the IC engine remain the heart of the automobile?

Keep Reading ↓Show less
{"imageShortcodeIds":["32357317","32357341"]}