Close

A "Manhattan Project" for the Next Generation of Bionic Arms

Johns Hopkins researchers lead a nationwide effort to make a bionic arm that wires directly into the brain to let amputees regain motor control--and feeling

9 min read

In February, the Defense Advanced Research Projects Agency (DARPA) authorized the next phase of a four-year program to create prosthetic arms that can better emulate natural limbs. They will more closely match the real thing in appearance and function. And the user's ability to feel with them and control them will be vast improvements over anything currently available. The Revolutionizing Prosthetics Program is spread over 30 different organizations, including 10 universities across Canada, Europe, and the United States: the University of New Brunswick, Fredericton, is working on signal processing and pattern recognition for natural arm control; the University of Utah, in Salt Lake City, is working on electrodes for brain implants. The Johns Hopkins University Applied Physics Laboratory, in Laurel, Md., is ”herding the cats,” according to DARPA project manager Colonel Geoffrey Ling, ensuring that these far-flung research partners work together to make the bionic arm a near-term reality. Scientists involved say that this Manhattan Project-like system--on which DARPA has already spent US $30.4 million--is the only way to bring technology this advanced into the world by 2009.

The program was conceived in 2005 to create prosthetic arms that would leapfrog the stagnant hook-and-cable technology that has improved little since World War II. DARPA split the program into two separate projects--one of them a two-year effort that would yield, by 2007, the most sophisticated mechanical arm possible with currently available technologies (that contract went to New Hampshire-based Deka Research and Development Corp.). The international Applied Physics Laboratory, the longer effort, also had a mandate to produce an arm with state-of-the-art mechanics by 2007. Called the Proto-1 this first APL arm, completed in 2007, had approximately eight joints or degrees of freedom.

Keep Reading ↓ Show less

Stay ahead of the latest trends in technology. Become an IEEE member.

This article is for IEEE members only. Join the world’s largest professional organization devoted to engineering and applied sciences and get access to all of Spectrum’s articles, podcasts, and special reports. Learn more →

Membership includes:

  • Get unlimited access to IEEE Spectrum content
  • Follow your favorite topics to create a personalized feed of IEEE Spectrum content
  • Save Spectrum articles to read later
  • Network with other technology professionals
  • Establish a professional profile
  • Create a group to share and collaborate on projects
  • Discover IEEE events and activities
  • Join and participate in discussions

This CAD Program Can Design New Organisms

Genetic engineers have a powerful new tool to write and edit DNA code

11 min read
A photo showing machinery in a lab

Foundries such as the Edinburgh Genome Foundry assemble fragments of synthetic DNA and send them to labs for testing in cells.

Edinburgh Genome Foundry, University of Edinburgh

In the next decade, medical science may finally advance cures for some of the most complex diseases that plague humanity. Many diseases are caused by mutations in the human genome, which can either be inherited from our parents (such as in cystic fibrosis), or acquired during life, such as most types of cancer. For some of these conditions, medical researchers have identified the exact mutations that lead to disease; but in many more, they're still seeking answers. And without understanding the cause of a problem, it's pretty tough to find a cure.

We believe that a key enabling technology in this quest is a computer-aided design (CAD) program for genome editing, which our organization is launching this week at the Genome Project-write (GP-write) conference.

With this CAD program, medical researchers will be able to quickly design hundreds of different genomes with any combination of mutations and send the genetic code to a company that manufactures strings of DNA. Those fragments of synthesized DNA can then be sent to a foundry for assembly, and finally to a lab where the designed genomes can be tested in cells. Based on how the cells grow, researchers can use the CAD program to iterate with a new batch of redesigned genomes, sharing data for collaborative efforts. Enabling fast redesign of thousands of variants can only be achieved through automation; at that scale, researchers just might identify the combinations of mutations that are causing genetic diseases. This is the first critical R&D step toward finding cures.

Keep Reading ↓ Show less