The July 2022 issue of IEEE Spectrum is here!

Close bar

A Bittersweet Milestone for the World’s Safest Nuclear Reactors

Westinghouse is poised to start up its first AP1000 nuclear reactors in China, fighting on in a troubled market

4 min read
Photo: Imaginechina/AP
False Start: Installation of the containment dome at China’s Haiyang nuclear plant in August 2015 was the end of the beginning of this AP1000 facility’s problems.
Photo: Imaginechina/AP

By late this year or early in 2018, two nuclear reactorscould start operating in China—an event that might be a lifesaver for the units’ crippled builder and designer, Westinghouse Electric Co., and for the technology they represent. Both Westinghouse and its prized AP1000 reactor design have suffered a series of humbling setbacks this year.

The AP1000 is arguably the world’s most advanced commercial reactor. It is designed to passively cool itself during an accidental shutdown, theoretically avoiding accidents like those at Ukraine’s Chernobyl power plant and Japan’s Fukushima Daiichi. And for over a decade, it has been the presumed successor to China’s mainstay reactors, which employ a 1970s-era French design.

Keep Reading ↓Show less

This article is for IEEE members only. Join IEEE to access our full archive.

Join the world’s largest professional organization devoted to engineering and applied sciences and get access to all of Spectrum’s articles, podcasts, and special reports. Learn more →

If you're already an IEEE member, please sign in to continue reading.

Membership includes:

  • Get unlimited access to IEEE Spectrum content
  • Follow your favorite topics to create a personalized feed of IEEE Spectrum content
  • Save Spectrum articles to read later
  • Network with other technology professionals
  • Establish a professional profile
  • Create a group to share and collaborate on projects
  • Discover IEEE events and activities
  • Join and participate in discussions

This Dutch City Is Road-Testing Vehicle-to-Grid Tech

Utrecht leads the world in using EVs for grid storage

10 min read
This photograph shows a car with the words “We Drive Solar” on the door, connected to a charging station. A windmill can be seen in the background.

The Dutch city of Utrecht is embracing vehicle-to-grid technology, an example of which is shown here—an EV connected to a bidirectional charger. The historic Rijn en Zon windmill provides a fitting background for this scene.

We Drive Solar

Hundreds of charging stations for electric vehicles dot Utrecht’s urban landscape in the Netherlands like little electric mushrooms. Unlike those you may have grown accustomed to seeing, many of these stations don’t just charge electric cars—they can also send power from vehicle batteries to the local utility grid for use by homes and businesses.

Debates over the feasibility and value of such vehicle-to-grid technology go back decades. Those arguments are not yet settled. But big automakers like Volkswagen, Nissan, and Hyundai have moved to produce the kinds of cars that can use such bidirectional chargers—alongside similar vehicle-to-home technology, whereby your car can power your house, say, during a blackout, as promoted by Ford with its new F-150 Lightning. Given the rapid uptake of electric vehicles, many people are thinking hard about how to make the best use of all that rolling battery power.

Keep Reading ↓Show less