The December 2022 issue of IEEE Spectrum is here!

Close bar

2018’s Top 10 Tech Cars: Rimac Concept One

It shows what EVs can do when cost is no object

1 min read
Photo of the Rimac Concept One.
One whole megawatt of battery power is what lets Rimac’s designers dream big.
Photo: Rimac Automobili

This Year’s
Winning Autos

Tesla has nothing to fear from Rimac. Nor does Porsche, nor any other purveyor of electrified performance. Richard Hammond may be another story: The former “Top Gear” star nearly killed himself by flipping the Rimac Concept One while filming an episode of Amazon’s TV show “The Grand Tour.”

Yet while the Concept One saw just eight copies built (now seven, thanks to Hammond), the US $1.2 million Croatian hypercar showed the awe-inspiring potential of electric performance.

Keep reading...Show less

This article is for IEEE members only. Join IEEE to access our full archive.

Join the world’s largest professional organization devoted to engineering and applied sciences and get access to all of Spectrum’s articles, podcasts, and special reports. Learn more →

If you're already an IEEE member, please sign in to continue reading.

Membership includes:

  • Get unlimited access to IEEE Spectrum content
  • Follow your favorite topics to create a personalized feed of IEEE Spectrum content
  • Save Spectrum articles to read later
  • Network with other technology professionals
  • Establish a professional profile
  • Create a group to share and collaborate on projects
  • Discover IEEE events and activities
  • Join and participate in discussions

Practical Solid-State Batteries Using Pressure

Mechanical stress exploits workaround to electrochemical failure

4 min read
Illustration shows a grey disk  with two metal circles on each end and a thin piece of metal attached to each. Thin grey strips branch out of one of them. Above and below the disk are illustrative red arrows facing the disk.

Researchers solved a problem facing solid-state lithium batteries, which can be shorted out by metal filaments called dendrites that cross the gap between metal electrodes. They found that applying a compression force across a solid electrolyte material (gray disk) caused the dendrite (dark line at left) to stop moving from one electrode toward the other (the round metallic patches at each side) and instead veer harmlessly sideways, toward the direction of the force.

MIT

Solid-state lithium-ion batteries promise to prove more safe, lightweight, and compact than their conventional counterparts. However, metal spikes can grow inside them, leading to short-circuit breakdowns. Now a new study finds that applying pressure on these batteries may prove a simple way to prevent such failures.

Conventional batteries supply electricity via chemical reactions between two electrodes, the anode and cathode, which typically interact through liquid or gel electrolytes. Solid-state batteries instead employ solid electrolytes such as ceramics.

Keep Reading ↓Show less

IEEE President’s Note: Looking to 2050 and Beyond

The importance of future-proofing IEEE

4 min read
Photo of K. J. Ray Liu
IEEE

What will the future of the world look like? Everything in the world evolves. Therefore, IEEE also must evolve, not only to survive but to thrive.

How will people build communities and engage with one another and with IEEE in the future? How will knowledge be acquired? How will content be curated, shared, and accessed? What issues will influence the development of technical standards? How should IEEE be organized to be most impactful?

Keep Reading ↓Show less

Solving Automotive Design Challenges With Simulation

Learn about low-frequency electromagnetic simulations and see a live demonstration of COMSOL Multiphysics software

1 min read

The development of new hybrid and battery electric vehicles introduces numerous design challenges. Many of these challenges are static or low-frequency electromagnetic by nature, as the devices involved in such designs are much smaller than the operating wavelength. Examples include sensors (such as MEMS sensors), transformers, and motors. Many of these challenges include multiple physics. For instance, sensors activated by acoustic energy as well as heat transfer in electric motors and power electronics combine low-frequency electromagnetic simulations with acoustic and heat transfer simulations, respectively.

Multiphysics simulation makes it possible to account for such phenomena in designs and can provide design engineers with the tools needed for developing products more effectively and optimizing device performance.

Keep Reading ↓Show less