2016's Top Ten Tech Cars: Ford GT
Photo: Ford

Video: Ford

Price: US $400,000

Power plant: 3.5-L V-6 with dual turbochargers; 485 kW (650 hp)

Overall fuel economy: N/A

Nearly a half century ago, the Ford GT40 went to the 24 Hours of LeMans and crushed mighty Ferrari, sparking an enduring legend. Now Ford looks for a LeMans déjà vu this summer with a reborn racing GT, followed by 250 annual copies of a roughly US $400,000 scissor-doored wonder car for the street.

The GT eschews a V-8 for a downsized twin-turbo V-6 based on its Daytona-winning LMP2 race engine. Ford is promising the best power-to-weight ratio of any production car in the world, with a hand-laid carbon-fiber tub and body for this midengine monster.

An active suspension lets the Ford hunker down at tripledigit speeds to reduce drag, while an active air brake at the rear rises and angles as needed to boost aero downforce or slow the car into corners. The gorgeous fuselage is billionaire bait, but the bravura style is wedded to pure function. A curved pair of flying buttresses perform dual tricks: The winged roof channels direct air to the rear spoiler, and their hollow sections contain piping for the turbo intercoolers: Engine intake air is hoovered from beneath the car, compressed into the turbos, then snaked through the winglets and down again to hyperventilate the V-6. Heated air from the intercoolers flows rearward and exits through tubes in the center of the rear taillights.

It’s all executed so beautifully that we were pleased to gawp at the thing at the recent Detroit Auto Show. But I’ll be happier when Ford finally lets us drive it.

The Conversation (0)

Becoming a Leader at NASA

Marcellus Proctor oversees major space projects

2 min read
Marcellus Proctor

"Growing up in the Bowie, Md., area, whenever we drove by NASA's Goddard Space Flight Center, I told my parents that I would work there someday," recounts Proctor, who is now an associate chief at Goddard for NASA's Electrical Engineering Division (EED).

Originally, Proctor was focused on astronomy, but during high school at an engineering exploration summer program he solved "a resistor equivalence problem that nobody else in the class had gotten [and] the instructor recommended I look at electrical engineering as a career instead." He got a master's in EE from Johns Hopkins University. "I started working at Tracor Systems (now part of BAE Systems) in their Standard Missile Program," recalls Proctor. "In 2001, after three years there, an opening at Goddard became available. I applied...and I've been there ever since."

Keep Reading ↓ Show less

Virtual IEEE-USA Conference Focuses on Tips for How to Enhance Your Career

Register now for the free 3 November event

2 min read
ISTOCKPHOTO

Registration is now open for EVO 2.0, IEEE-USA's third and final virtual event of the year, taking place on 3 November. The free half-day conference features all-new speakers, with a continued focus on emerging technology, future perspectives, and career-enhancing tips.

SNEAK PEEK

Keep Reading ↓ Show less

EP29LPSP: Applications in Plasma Physics, Astronomy, and Highway Engineering

Ideal for demanding cryogenic environments, two-part EP29LPSP can withstand temperatures as low as 4K

3 min read

Since its introduction in 1978, Master Bond EP29LPSP has been the epoxy compound of choice in a variety of challenging applications. Ideal for demanding cryogenic environments, two-part EP29LPSP can withstand temperatures as low as 4K and can resist cryogenic shock when, for instance, it is cooled from room temperature to cryogenic temperatures within a 5-10 minute window. Optically clear EP29LPSP has superior physical strength, electrical insulation, and chemical resistance properties. It also meets NASA low outgassing requirements and exhibits a low exotherm during cure. This low viscosity compound is easy to apply and bonds well to metals, glass, ceramics, and many different plastics. Curable at room temperature, EP29LPSP attains its best results when cured at 130-165°F for 6-8 hours.

In over a dozen published research articles, patents, and manufacturers' specifications, scientists and engineers have identified EP29LPSP for use in their applications due to its unparalleled performance in one or more areas. Table 1 highlights several commercial and research applications that use Master Bond EP29LPSP. Table 2 summarizes several patents that reference EP29LPSP. Following each table are brief descriptions of the role Master Bond EP29LPSP plays in each application or invention.

Keep Reading ↓ Show less

Trending Stories

The most-read stories on IEEE Spectrum right now