Close

109 Microwave Towers Bring the Internet to Remote Alaska Villages

A $300 million telecom project will boost speeds or provide service to many for the first time

13 min read
Photo: Amy Nordrum
The Last Link: A microwave tower stands just above the Arctic Circle in Alaska. It was one of the final towers installed as part of a six-year project to improve connectivity in the Far North. The tower, which is still awaiting its antennas, will be powered by two diesel generators.
Photo: Amy Nordrum

A hulking orange helicopter named Annie hoists a gleaming metal tower into the sky on the outskirts of Kotzebue, a small Alaskan city just north of the Arctic Circle. Engines roaring, Annie pauses to steady its load, which had begun to sway below, and veers off toward a bald mountaintop.

On the mountain, at a rocky site called Igichuk, a work crew has just finished setting up the tower’s base, dropped off earlier by Annie. Now, they’re focused on executing the most delicate delivery of the day, one of many difficult steps required to sink a single new telecommunications tower into the vast, roadless Alaskan tundra.

Keep reading... Show less

Stay ahead of the latest trends in technology. Become an IEEE member.

This article is for IEEE members only. Join the world’s largest professional organization devoted to engineering and applied sciences and get access to all of Spectrum’s articles, podcasts, and special reports. Learn more →

Membership includes:

  • Get unlimited access to IEEE Spectrum content
  • Follow your favorite topics to create a personalized feed of IEEE Spectrum content
  • Save Spectrum articles to read later
  • Network with other technology professionals
  • Establish a professional profile
  • Create a group to share and collaborate on projects
  • Discover IEEE events and activities
  • Join and participate in discussions

A Transistor for Sound Points Toward Whole New Electronics

“Topological” acoustic transistor suggests circuits with dissipationless flow of electricity or light

3 min read
Model of a honeycomb lattice

Model of a honeycomb lattice that serves as the basis for a "transistor" of sound waves—whose design suggests new kinds of transistors of light and electricity, made from so-called topological materials. Electrons in a topological transistor, it is suspected, would flow without any resistance.

Hoffman Lab/Harvard SEAS

Potential future transistors that consume far less energy than current devices may rely on exotic materials called "topological insulators" in which electricity flows across only surfaces and edges, with virtually no dissipation of energy. In research that may help pave the way for such electronic topological transistors, scientists at Harvard have now invented and simulated the first acoustic topological transistors, which operate with sound waves instead of electrons.

Topology is the branch of mathematics that explores the nature of shapes independent of deformation. For instance, an object shaped like a doughnut can be deformed into the shape of a mug, so that the doughnut's hole becomes the hole in the cup's handle. However, the object couldn't lose the hole without changing into a fundamentally different shape.

Keep Reading ↓ Show less

Taking Cosmology to the Far Side of the Moon

New Chinese program plans to use satellites in lunar orbit to study faint signals from early universe

3 min read
crescent moon
Darwin Fan/Getty Images

A team of Chinese researchers are planning to use the moon as a shield to detect otherwise hard-to-observe low frequencies of the electromagnetic spectrum and open up a new window on the universe. The Discovering the Sky at the Longest Wavelengths (DSL) mission aims to seek out faint, low-frequency signals from the early cosmos using an array of 10 satellites in lunar orbit. If it launches in 2025 as planned, it will offer one of the very first glimpses of the universe through a new lens.

Nine “sister” spacecraft will make observations of the sky while passing over the far side of the moon, using our 3,474-kilometer-diameter celestial neighbor to block out human-made and other electromagnetic interference. Data collected in this radio-pristine environment will, according to researchers, be gathered by a larger mother spacecraft and transmitted to Earth when the satellites are on the near side of the moon and in view of ground stations.

Keep Reading ↓ Show less

National Instruments Paves the Way for Terahertz Regime in 6G Networks

Developing tools that can test new technologies for 6G networks is the key step in making it a reality

3 min read

This is a sponsored article brought to you by National Instruments (NI).

While 5G networks continue their rollout around the world, researchers and engineers are already looking ahead to a new generation of mobile networks, dubbed 6G. One of the key elements for 6G networks will be to move beyond the millimeter wave (mmWave) spectrum and up into the terahertz (THz) spectrum. The THz spectrum will certainly open up more bandwidth, but there are a number of technical challenges that will need to be addressed if mobile networks can ever exploit this spectrum.

Keep Reading ↓ Show less