New Quantum Dots Make Colors in LCD Even Brighter

Quantum dots have been promoted as a technology that is poised to transform the LCD (liquid-crystal display) market for years now. This promise looked to be taking shape when California-based Nanosys Inc. announced last year that it had worked out a deal with the Optical Systems Division of 3M Company to produce an LCD capable of displaying 50 percent more color.

The Nanosys/3M pairing was intended to improve the color and performance efficiency of LCD displays by using the quantum dots as an improved back light.

In the current display market landscape, LCDs are both inefficient and don’t produce the vibrant colors of organic light-emitting diodes (OLEDs). However, LCDs are far cheaper to produce in large screen sizes, and consumers often choose the right price over the right color. Quantum dots were supposed to give us the best of both worlds.

In work that appears to tip the scales further for quantum dot-enabled LCDs, researchers at the University of Illinois at Chicago (UIC) have developed a method for doping quantum dots that will give LCDs a color vibrancy not seen before.

In research published in the ACS journal Nano Letters ("Cluster-Seeded Synthesis of Doped CdSe:Cu4 Quantum Dots"), the UIC team reveal a method for introducing precisely four copper ions into each and every quantum dot. This doping with copper ions opens up the potential for fine-tuning the optical properties of the quantum dots and producing extraordinarily bright colors.

“When the crystallinity is perfect, the quantum dots do something that no one expected—they become very emissive and end up being the world’s best dye,” says Preston Snee, assistant professor of chemistry at UIC and principal investigator on the study, in a press release.

Whether UIC's doped quantum could be a compliment to the Nanosys/3M technology or a competition is not known. Likewise, it remains to be seen if they can keep LCDs at or near their current price point while bringing picture quality up to that of OLEDs. In other words, it'll take a few more years worth of Consumer Electronics Shows to sort out the winners and losers.

Image: University of Illinois, Chicago

Advertisement

Nanoclast

IEEE Spectrum’s nanotechnology blog, featuring news and analysis about the development, applications, and future of science and technology at the nanoscale.

 
Editor
Dexter Johnson
Madrid, Spain
 
Contributor
Rachel Courtland
Associate Editor, IEEE Spectrum
New York, NY
Advertisement