National Instruments Introduces LabVIEW Package for Robotics Design

national instruments labview robotics starter kit

A long time ago in a galaxy far away, two friends and I -- all EE undergrads -- set out to transform an RC car into a line-following mobile robot. We wanted to control it remotely from a PC, where we could implement PID and various other controllers. It took us long nights in the lab writing C code, soldering digital potentiometers to the remote control, and tweaking the finicky analog video camera. In the end -- after major repairs following an incident in which the robot hit a lab bench and exploded into pieces -- the little bot worked, making three nerds very happy.

As I look back, over 10 years later, it was a lot of work for a simple bot, and I can only imagine what it takes to build much more complex robotic systems. Wouldn't it be nice if there existed a robotics development platform with a graphical interface and support to standard sensors and actuators? You could simply connect a set of blocks representing the robot’s parts on a screen, then concoct a control strategy, put the hardware together, and click "Run."

On Monday, National Instruments announced one such platform. It's called LabView Robotics. In addition to LabView, the popular data-acquisition application, the package includes a bunch of tools specific to robotics. It can import codes in various formats (C, C++, Matlab, VHDL), offers a library of drivers for a wide variety of sensors and actuators, and has modules for implementation of real-time and embedded hardware. NI says engineers could use the package to both design and run their robotic systems. 

Meghan Kerry, an academic product marketing engineer at NI, tells me that developing a relatively complex robot is becoming just too complicated, involving lots of software development, modeling and simulation, hardware integration, and so forth. "A roboticist needs to be an expert in all of those areas or manage a team of experts," she says. NI, she adds, wants to make design simpler and faster, so "a roboticist doesn’t have to spend time with things like developing drivers and can focus on the robot's algorithms and intelligence."

Now, I haven't tested LabView Robotics, so I don't have a detailed, first-hand review to report. The product is aimed at industry and academic users; a full license costs US $15,000, or you could get a $2,000 starter kit [photo above] that includes evaluation software, RIO hardware, sensors, motors, and other parts. What I find most interesting is the fact that the new package is an open platform, so users can easily share designs and code. If lots of people begin to do that, a huge resource for robotics projects could emerge. Bet you could even find a recipe for a line-following robot to be built in 15 minutes.

Photo: National Instruments

UPDATE: Here's a video showing some robots NI engineers have been testing:

 

Advertisement

Automaton

IEEE Spectrum's award-winning robotics blog, featuring news, articles, and videos on robots, humanoids, automation, artificial intelligence, and more.
Contact us:  e.guizzo@ieee.org

Editor
Erico Guizzo
New York, N.Y.
Senior Writer
Evan Ackerman
Berkeley, Calif.
 
Contributor
Jason Falconer
Canada
Contributor
Angelica Lim
Tokyo, Japan
 

Newsletter Sign Up

Sign up for the Automaton newsletter and get biweekly updates about robotics, automation, and AI, all delivered directly to your inbox.

Advertisement