Close

Your Guide to Television’s Quantum-Dot Future

Move over, OLEDs. Quantum dots will be the next darling of display manufacturers

14 min read
Quantum dot illustration Brandon Palacio
Brandon Palacio

The future of the television set was supposed to be simple. At some point in the near future, LCDs were supposed to become obsolete and give way to bright, sharp, and incredibly thin OLED displays. It turns out that the near future of TVs isn't going to be so simple—but it sure is going to be bright.

The reason? Quantum dots. If you've shopped for a TV lately, you've probably been dazzled, or more likely perplexed, by the array of new acronyms being splashed around by the best-known TV makers. Perhaps you've wondered what they mean by QD, QUHD, SUHD, and ULED. We're here to help. Each of these trade names refers to a quantum-dot technology available today. We'll explain the different approaches as well as other ways quantum dots will be used in future television displays. Even if you've had your heart set on an OLED TV, we think you'll find the coming world of very-high-performance quantum-dot displays appealing. For one thing, this emerging technology is going to finally make possible the printable, rollable, and wallpaper-ready televisions that we've all been promised for the past 20 years.

Keep reading... Show less

Stay ahead of the latest trends in technology. Become an IEEE member.

This article is for IEEE members only. Join the world’s largest professional organization devoted to engineering and applied sciences and get access to all of Spectrum’s articles, podcasts, and special reports. Learn more →

Membership includes:

  • Get unlimited access to IEEE Spectrum content
  • Follow your favorite topics to create a personalized feed of IEEE Spectrum content
  • Save Spectrum articles to read later
  • Network with other technology professionals
  • Establish a professional profile
  • Create a group to share and collaborate on projects
  • Discover IEEE events and activities
  • Join and participate in discussions

A Transistor for Sound Points Toward Whole New Electronics

“Topological” acoustic transistor suggests circuits with dissipationless flow of electricity or light

3 min read
Model of a honeycomb lattice

Model of a honeycomb lattice that serves as the basis for a "transistor" of sound waves—whose design suggests new kinds of transistors of light and electricity, made from so-called topological materials. Electrons in a topological transistor, it is suspected, would flow without any resistance.

Hoffman Lab/Harvard SEAS

Potential future transistors that consume far less energy than current devices may rely on exotic materials called "topological insulators" in which electricity flows across only surfaces and edges, with virtually no dissipation of energy. In research that may help pave the way for such electronic topological transistors, scientists at Harvard have now invented and simulated the first acoustic topological transistors, which operate with sound waves instead of electrons.

Topology is the branch of mathematics that explores the nature of shapes independent of deformation. For instance, an object shaped like a doughnut can be deformed into the shape of a mug, so that the doughnut's hole becomes the hole in the cup's handle. However, the object couldn't lose the hole without changing into a fundamentally different shape.

Keep Reading ↓ Show less

Taking Cosmology to the Far Side of the Moon

New Chinese program plans to use satellites in lunar orbit to study faint signals from early universe

3 min read
crescent moon
Darwin Fan/Getty Images

A team of Chinese researchers are planning to use the moon as a shield to detect otherwise hard-to-observe low frequencies of the electromagnetic spectrum and open up a new window on the universe. The Discovering the Sky at the Longest Wavelengths (DSL) mission aims to seek out faint, low-frequency signals from the early cosmos using an array of 10 satellites in lunar orbit. If it launches in 2025 as planned, it will offer one of the very first glimpses of the universe through a new lens.

Nine “sister” spacecraft will make observations of the sky while passing over the far side of the moon, using our 3,474-kilometer-diameter celestial neighbor to block out human-made and other electromagnetic interference. Data collected in this radio-pristine environment will, according to researchers, be gathered by a larger mother spacecraft and transmitted to Earth when the satellites are on the near side of the moon and in view of ground stations.

Keep Reading ↓ Show less

Adhesives Gain Popularity for Wearable Devices

Adhesive formulations help with challenging assembly of wearables and medical sensors

3 min read

A major challenge in wearable device assembly is to maximize the reliability of embedded circuits while keeping the package thin and flexible.

Shutterstock

This is a sponsored article brought to you by Master Bond.

Master Bond adhesive formulations provide solutions for challenging assembly applications in manufacturing electronic wearable devices. Product formulations include epoxies, silicones, epoxy-polyurethane hybrids, cyanoacrylates, and UV curing compounds.

There are some fundamental things to consider when deciding what is the right adhesive for the assembly of electronic wearable devices. Miniaturization of devices, and the need to meet critical performance specifications with multiple substrates, require an analysis of which chemical composition is most suitable to satisfy the required parameters.

These preliminary decisions are often predicated on the tradeoffs between different adhesive chemistries. They may vary widely, and in many cases are essential in achieving the needed goals in adhering parts and surfaces properly.

Keep Reading ↓ Show less