U.S. Spy Agencies Seek Tech to Identify Deadly Chemicals From 30 Meters Away

Three teams are developing rival technologies to combat explosives, nerve gases, and other threats

3 min read
Photo: Andrew Matthews/PA/Getty Images
Careful Work: Investigators examine a bench in England for chemical traces of a nerve agent after two victims were found there.
Photo: Andrew Matthews/PA/Getty Images

Sergei Skripal, a former Russian intelligence officer who became a double agent for the United Kingdom, and his daughter, Yulia, weren’t the only people affected by a nerve-agent attack in Salisbury, England, in March. Nearly 40 others were sickened, including three police officers who were hospitalized, one of them for more than two weeks. A swarm of hazmat-suited chemical warfare experts inspected every place the Skripals had been recently in the hope of finding out what happened and whether there was still a danger to the public.

U.S. intelligence agencies have been on the hunt for a technology that would make such investigations faster and safer and perhaps even prevent this kind of attack altogether. The Standoff ILluminator for Measuring Absorbance and Reflectance Infrared Light Signatures (SILMARILS) program at the Intelligence Advanced Research Projects Activity should conclude, by mid-⁠2021, with a possible solution: a portable scanner that can identify a fingerprint’s worth of a library of some 500 chemicals—spanning the dangerous (the explosive PETN) to the mundane (caffeine)—on surfaces like car doors from a distance of 5 to 30 meters.

Keep Reading ↓ Show less

Stay ahead of the latest trends in technology. Become an IEEE member.

This article is for IEEE members only. Join the world’s largest professional organization devoted to engineering and applied sciences and get access to all of Spectrum’s articles, podcasts, and special reports. Learn more →

Membership includes:

  • Get unlimited access to IEEE Spectrum content
  • Follow your favorite topics to create a personalized feed of IEEE Spectrum content
  • Save Spectrum articles to read later
  • Network with other technology professionals
  • Establish a professional profile
  • Create a group to share and collaborate on projects
  • Discover IEEE events and activities
  • Join and participate in discussions

3 Ways 3D Chip Tech Is Upending Computing

AMD, Graphcore, and Intel show why the industry’s leading edge is going vertical

8 min read
AMD 3D V-Cache
AMD
DarkBlue1

A crop of high-performance processors is showing that the new direction for continuing Moore’s Law is all about up. Each generation of processor needs to perform better than the last, and, at its most basic, that means integrating more logic onto the silicon. But there are two problems: One is that our ability to shrink transistors and the logic and memory blocks they make up is slowing down. The other is that chips have reached their size limits. Photolithography tools can pattern only an area of about 850 square millimeters, which is about the size of a top-of-the-line Nvidia GPU.

For a few years now, developers of systems-on-chips have begun to break up their ever-larger designs into smaller chiplets and link them together inside the same package to effectively increase the silicon area, among other advantages. In CPUs, these links have mostly been so-called 2.5D, where the chiplets are set beside each other and connected using short, dense interconnects. Momentum for this type of integration will likely only grow now that most of the major manufacturers have agreed on a 2.5D chiplet-to-chiplet communications standard.

Keep Reading ↓ Show less
{"imageShortcodeIds":[]}