Tiny Robot Makes Big Jumps with Explosive Microrockets

Watch these millimeter-sized robots jump huge distances with springs and chemical engines

2 min read
Tiny Robot Makes Big Jumps with Explosive Microrockets

We've seen all kinds of crazy jumping robots, from humanoids to grasshoppers to soft and flexible spheres. But when you start making small robots, like seriously small robots (on the millimeter scale), you have to find new ways to get them to jump, and the Army Research Laboratory has teamed up with the University of Maryland to develop a couple clever ideas.

Pictured above is a four millimeter-long robot, complete with a power source, an integrated control system, and light sensors. To move, it relies on on the rapid conversion of stored chemical energy to gas in a chemical reaction, which is just a fancy way of saying either "rocket motor" or "controlled explosion." Underneath the robot is a small chip of nanoporous silicon that gets infused with a sodium perchlorate oxidizer, and when a current heats up the chip, it ignites, propelling the robot upward. Initial tests have yielded a jump height of about eight centimeters, which doesn't sound like much, but the robot is so small that it's still outjumping its own size by a factor of 20.

The other jumping bot that these researchers have come up with is a bit more traditional, using microfabricated elastomer springs to store up energy and release it all at once to make a jump. This method may be a bit less violent than the rocket-powered bot, but the spring robot depends on an external power source (a dude pushing the spring down with tweezers). With this human help (which will eventually replaced by micromotors to wind the spring up) it can jump really, really high, at about 80 times its own height. You can see both of these robots in action in the video below: 

The next step for these robots is to tweak them to be able to jump more than once, and in the direction that you want them to go. Oh, and to figure out how to get them to land properly, and then do productive stuff once they return to Earth. For the chemical jumping robot, adding little nozzles to the chemical engine should solve the steering problem while also quadrupling its effective power by directing the thrust more efficiently. Stitching an array of about 100 of these engines together along the bottom of a microbot could allow for a whole series of jumps (and even jumps followed by mid-air rocket pulses to keep flying), ultimately resulting in a range of some 65 meters, which works out to be a staggering 16,000 times the length of the robot itself. Not bad at all.

Ultimately, the idea is that these bots will be fast and cheap to manufacture, easy to deploy, and expendable enough that it'll be possible to use swarms of them for things like surveillance and monitoring and terrorizing your imagination.

"First Leaps Toward Jumping Microrobots" by Wayne A. Churaman, Aaron P. Gerratt, and Sarah Bergbreiter from the Army Research Laboratory and the University of Maryland Microrobotics Lab was presented this week at the IEEE International Conference on Intelligent Robots and Systems.

[ UMD Microrobotics ]

The Conversation (0)

The Bionic-Hand Arms Race

The prosthetics industry is too focused on high-tech limbs that are complicated, costly, and often impractical

12 min read
A photograph of a young woman with brown eyes and neck length hair dyed rose gold sits at a white table. In one hand she holds a carbon fiber robotic arm and hand. Her other arm ends near her elbow. Her short sleeve shirt has a pattern on it of illustrated hands.

The author, Britt Young, holding her Ottobock bebionic bionic arm.

Gabriela Hasbun. Makeup: Maria Nguyen for MAC cosmetics; Hair: Joan Laqui for Living Proof

In Jules Verne’s 1865 novel From the Earth to the Moon, members of the fictitious Baltimore Gun Club, all disabled Civil War veterans, restlessly search for a new enemy to conquer. They had spent the war innovating new, deadlier weaponry. By the war’s end, with “not quite one arm between four persons, and exactly two legs between six,” these self-taught amputee-weaponsmiths decide to repurpose their skills toward a new projectile: a rocket ship.

The story of the Baltimore Gun Club propelling themselves to the moon is about the extraordinary masculine power of the veteran, who doesn’t simply “overcome” his disability; he derives power and ambition from it. Their “crutches, wooden legs, artificial arms, steel hooks, caoutchouc [rubber] jaws, silver craniums [and] platinum noses” don’t play leading roles in their personalities—they are merely tools on their bodies. These piecemeal men are unlikely crusaders of invention with an even more unlikely mission. And yet who better to design the next great leap in technology than men remade by technology themselves?

Keep Reading ↓Show less