The Race to Build a Search Engine for Your DNA

Genome-search companies vie to be the Google of personalized medicine

3 min read
The Race to Build a Search Engine for Your DNA
Photo: Andrew Brookes/Corbis

In 2005, next-generation sequencing began to change the field of genetics research. Obtaining a person’s entire genome became fast and relatively cheap. Databases of genetic information were growing by the terabyte, and doctors and researchers were in desperate need of a way to efficiently sift through the information for the cause of a particular disorder or for clues to how patients might respond to treatment.

Companies have sprung up over the past five years that are vying to produce the first DNA search engine. All of them have different tactics—some even have their own proprietary databases of genetic information—but most are working to link enough genetic databases so that users can quickly identify a huge variety of mutations. Most companies also craft search algorithms to supplement the genetic information with relevant biomedical literature. But as in the days of the early Web, before Google reigned supreme, a single company has yet to emerge as the clear winner.

Keep Reading ↓Show less

This article is for IEEE members only. Join IEEE to access our full archive.

Join the world’s largest professional organization devoted to engineering and applied sciences and get access to all of Spectrum’s articles, podcasts, and special reports. Learn more →

If you're already an IEEE member, please sign in to continue reading.

Membership includes:

  • Get unlimited access to IEEE Spectrum content
  • Follow your favorite topics to create a personalized feed of IEEE Spectrum content
  • Save Spectrum articles to read later
  • Network with other technology professionals
  • Establish a professional profile
  • Create a group to share and collaborate on projects
  • Discover IEEE events and activities
  • Join and participate in discussions

Restoring Hearing With Beams of Light

Gene therapy and optoelectronics could radically upgrade hearing for millions of people

13 min read
A computer graphic shows a gray structure that’s curled like a snail’s shell. A big purple line runs through it. Many clusters of smaller red lines are scattered throughout the curled structure.

Human hearing depends on the cochlea, a snail-shaped structure in the inner ear. A new kind of cochlear implant for people with disabling hearing loss would use beams of light to stimulate the cochlear nerve.

Lakshay Khurana and Daniel Keppeler
Blue

There’s a popular misconception that cochlear implants restore natural hearing. In fact, these marvels of engineering give people a new kind of “electric hearing” that they must learn how to use.

Natural hearing results from vibrations hitting tiny structures called hair cells within the cochlea in the inner ear. A cochlear implant bypasses the damaged or dysfunctional parts of the ear and uses electrodes to directly stimulate the cochlear nerve, which sends signals to the brain. When my hearing-impaired patients have their cochlear implants turned on for the first time, they often report that voices sound flat and robotic and that background noises blur together and drown out voices. Although users can have many sessions with technicians to “tune” and adjust their implants’ settings to make sounds more pleasant and helpful, there’s a limit to what can be achieved with today’s technology.

Keep Reading ↓Show less
{"imageShortcodeIds":[]}