The December 2022 issue of IEEE Spectrum is here!

Close bar

Terraforming Mars

Proposals to terraform the Red Planet abound, but are any of them feasible?

5 min read

In August, NASA’s unmanned Phoenix Mars Mission blasted off from the Kennedy Space Center as the first mission of NASA’s Mars Scout Program. Phoenix will reach the Red planet in May 2008, and is part of NASA’s strategy to ”follow the water” on Mars. This will pave the way for manned Martian missions, which President George W. Bush made a NASA priority in 2004. No date has been set for the crewed mission to Mars, but NASA is drawing up plans. The ultimate goal: making Mars a human outpost.

The renewed focus on Mars has rejuvenated the idea of terraforming Mars, which once belonged to the realm of science fiction, but is becoming increasingly possible today. Terraforming—or earthforming—is a Herculean feat of planetwide engineering that will change the Martian atmosphere and allow humans to make uninhabitable Mars into a planet fit for natural life. Space suits will still be necessary for human habitation, but food will available from plants that grow on a more temperate Mars.

Keep Reading ↓Show less

This article is for IEEE members only. Join IEEE to access our full archive.

Join the world’s largest professional organization devoted to engineering and applied sciences and get access to all of Spectrum’s articles, podcasts, and special reports. Learn more →

If you're already an IEEE member, please sign in to continue reading.

Membership includes:

  • Get unlimited access to IEEE Spectrum content
  • Follow your favorite topics to create a personalized feed of IEEE Spectrum content
  • Save Spectrum articles to read later
  • Network with other technology professionals
  • Establish a professional profile
  • Create a group to share and collaborate on projects
  • Discover IEEE events and activities
  • Join and participate in discussions
Two men fix metal rods to a gold-foiled satellite component in a warehouse/clean room environment

Technicians at Northrop Grumman Aerospace Systems facilities in Redondo Beach, Calif., work on a mockup of the JWST spacecraft bus—home of the observatory’s power, flight, data, and communications systems.


For a deep dive into the engineering behind the James Webb Space Telescope, see our collection of posts here.

When the James Webb Space Telescope (JWST) reveals its first images on 12 July, they will be the by-product of carefully crafted mirrors and scientific instruments. But all of its data-collecting prowess would be moot without the spacecraft’s communications subsystem.

The Webb’s comms aren’t flashy. Rather, the data and communication systems are designed to be incredibly, unquestionably dependable and reliable. And while some aspects of them are relatively new—it’s the first mission to use Ka-band frequencies for such high data rates so far from Earth, for example—above all else, JWST’s comms provide the foundation upon which JWST’s scientific endeavors sit.

Keep Reading ↓Show less