The December 2022 issue of IEEE Spectrum is here!

Close bar

Tapping the Desert: Can Saharan Sun Really Help Power Europe?

Desertec project now said to be ahead of schedule, first power delivered in five years.

2 min read
Tapping the Desert: Can Saharan Sun Really Help Power Europe?

Parts of Europe are already lapping the rest of the world in terms of renewable energy production and commitment, with Germany among the leaders in wind development and Spain holding a similar position in the solar power field. To meet the continent's lofty (relatively speaking) renewable goals, though, a mega-project situated south of the Mediterranean might end up as the most important piece.

The Desertec project, first conceived in 2003, has the following general goal: "Clean power from deserts for a world with 10 billion people." The flagship of that concept is a series of huge concentrating thermal plants in the Sahara Desert and elsewhere around North Africa and the Middle East, with transmission lines bringing the power north into Europe.

The numbers that Desertec can throw out are pretty staggering: by 2050, the projects are capable of generating up to 470,000 megawatts of electricity; only 0.02 percent of the land area in the region will be needed for all of the solar plants; in fact, only one percent of the entire world's desert area, if covered by solar power plants, could power, well, everything.

And now, in spite of an initial estimate that electricity might start flowing from the Sahara within 10 years, recent announcements indicate that number might be cut in half. The first pilot project appears slated for Morocco, and other countries in the region are on board as well.

Of course, any project so massive in scope carries with it a laundry list of pitfalls and potential problems. Transmission of all that electricity is probably exhibit A for such issues, but Desertec doesn't seem concerned. They note that the power loss over high-voltage direct-current transmission lines is about 4 to 5 percent per 1,000 kilometers of transmission; the costs associated with such losses, however, are made up by the remarkably high insolation (solar radiation energy) in the North Africa region, according to Desertec. And in fact, an industry group recently announced preliminary plans for an undersea grid of transmission cables in the Mediterranean to be developed in parallel with Desertec.

Among the other issues are cost - at least 400 billion Euros (about $520 billion) - and the risks associated with high level development in a number of politically unstable countries. But with Europe's 20-percent-by-2020 renewables goal only a decade away, such concerns seem to be taking a back seat. It looks more and more that before too long has passed, the Sahara really will help power Europe.

(Image via DESERTEC Foundation,

The Conversation (0)
This photograph shows a car with the words “We Drive Solar” on the door, connected to a charging station. A windmill can be seen in the background.

The Dutch city of Utrecht is embracing vehicle-to-grid technology, an example of which is shown here—an EV connected to a bidirectional charger. The historic Rijn en Zon windmill provides a fitting background for this scene.

We Drive Solar

Hundreds of charging stations for electric vehicles dot Utrecht’s urban landscape in the Netherlands like little electric mushrooms. Unlike those you may have grown accustomed to seeing, many of these stations don’t just charge electric cars—they can also send power from vehicle batteries to the local utility grid for use by homes and businesses.

Debates over the feasibility and value of such vehicle-to-grid technology go back decades. Those arguments are not yet settled. But big automakers like Volkswagen, Nissan, and Hyundai have moved to produce the kinds of cars that can use such bidirectional chargers—alongside similar vehicle-to-home technology, whereby your car can power your house, say, during a blackout, as promoted by Ford with its new F-150 Lightning. Given the rapid uptake of electric vehicles, many people are thinking hard about how to make the best use of all that rolling battery power.

Keep Reading ↓Show less