IEEE.orgIEEE Xplore Digital LibraryIEEE StandardsMore Sites
    Sign InJoin IEEE
    Secretly Tag 3-D-Printed Objects With InfraStructs
    Share
    FOR THE TECHNOLOGY INSIDER
    Explore by topic
    AerospaceAIBiomedicalClimate TechComputingConsumer ElectronicsEnergyHistory of TechnologyRoboticsSemiconductorsTelecommunicationsTransportation
    IEEE Spectrum
    FOR THE TECHNOLOGY INSIDER

    Topics

    AerospaceAIBiomedicalClimate TechComputingConsumer ElectronicsEnergyHistory of TechnologyRoboticsSemiconductorsTelecommunicationsTransportation

    Sections

    FeaturesNewsOpinionCareersDIYEngineering Resources

    More

    NewslettersSpecial ReportsCollectionsExplainersTop Programming LanguagesRobots Guide ↗IEEE Job Site ↗

    For IEEE Members

    Current IssueMagazine ArchiveThe InstituteThe Institute Archive

    For IEEE Members

    Current IssueMagazine ArchiveThe InstituteThe Institute Archive

    IEEE Spectrum

    About UsContact UsReprints & Permissions ↗Advertising ↗

    Follow IEEE Spectrum

    Support IEEE Spectrum

    IEEE Spectrum is the flagship publication of the IEEE — the world’s largest professional organization devoted to engineering and applied sciences. Our articles, videos, and infographics inform our readers about developments in technology, engineering, and science.
    Subscribe
    About IEEEContact & SupportAccessibilityNondiscrimination PolicyTermsIEEE Privacy PolicyCookie PreferencesAd Privacy Options
    © Copyright 2025 IEEE — All rights reserved. A public charity, IEEE is the world's largest technical professional organization dedicated to advancing technology for the benefit of humanity.

    Enjoy more free content and benefits by creating an account

    Saving articles to read later requires an IEEE Spectrum account

    The Institute content is only available for members

    Downloading full PDF issues is exclusive for IEEE Members

    Downloading this e-book is exclusive for IEEE Members

    Access to Spectrum 's Digital Edition is exclusive for IEEE Members

    Following topics is a feature exclusive for IEEE Members

    Adding your response to an article requires an IEEE Spectrum account

    Create an account to access more content and features on IEEE Spectrum , including the ability to save articles to read later, download Spectrum Collections, and participate in conversations with readers and editors. For more exclusive content and features, consider Joining IEEE .

    Join the world’s largest professional organization devoted to engineering and applied sciences and get access to all of Spectrum’s articles, archives, PDF downloads, and other benefits. Learn more about IEEE →

    Join the world’s largest professional organization devoted to engineering and applied sciences and get access to this e-book plus all of IEEE Spectrum’s articles, archives, PDF downloads, and other benefits. Learn more about IEEE →

    CREATE AN ACCOUNTSIGN IN
    JOIN IEEESIGN IN
    Close

    Access Thousands of Articles — Completely Free

    Create an account and get exclusive content and features: Save articles, download collections, and post comments — all free! For full access and benefits, subscribe to Spectrum.

    CREATE AN ACCOUNTSIGN IN
    Consumer ElectronicsVideo

    Secretly Tag 3-D-Printed Objects With InfraStructs

    Microsoft Research combines terahertz scanning with 3-D printing to embed codes and shapes inside objects

    Davey Alba
    20 Aug 2013
    Secretly Tag 3-D-Printed Objects With InfraStructsplay icon
    Photo: Microsoft Research
    type:videofull spectrumvideoterahertz3d printingmicrosoft researchgadgetssci-fiscanning

    Ever wanted to send secret information just by passing along an ordinary-looking object? That’s the premise of Microsoft Research’s new project, InfraStructs, which pioneers techniques for concealing identifiers inside 3-D-printed objects. Anyone with a 3-D printer can fabricate an object with coded air pockets, or voids. And then anyone with a terahertz scanner can decode the tag hidden in the object—whether it’s a shape, a line of binary, or a gray code. It’s the modern microdot.  

    Microsoft presented the scheme at Siggraph 2013, the 40th International Conference and Exhibition on Computer Graphics and Interactive Techniques, sponsored by the Association for Computing Machinery, on 25 July. IEEE Spectrum’s Davey Alba had Andy Wilson, a principal researcher at Microsoft Research who studies human-computer interaction, explain how InfraStructs works.

    Transcript:

    Davey Alba: Welcome to the Full Spectrum. I’m Davey Alba for IEEE Spectrum. We’re here today with Andy Wilson from Microsoft Research. He’s here to tell us about InfraStructs, a research project that pioneers techniques for reading hidden information in objects. InfraStructs lets you embed binary codes, 3-D watermarks, and geometric shapes into 3-D-printed objects, and then it reads it back with terahertz scanning. Andy, welcome.

    Andy Wilson: Hi, how’s it going? Thanks for having me.

    Davey Alba: Thanks so much for joining us. So, what exactly is InfraStructs and how does it work?

    Andy Wilson: So there’re all different kinds of imaging technology we’re interested in. This is some work where we’ve investigated terahertz imaging. So we put the 3-D printing stuff together with the terahertz-imaging techniques that are out there and combined them in an interesting way to embed patterns within 3-D-printed objects. People are studying various techniques like object recognition in the field of computer vision. InfraStructs does something rather differently, where we actually make it relatively easy to identify an object by constructing a recognizable pattern underneath the surface.

    So you’ve probably also seen techniques in augmented reality, for example, where you actually put a printed code on the surface of an object. So this is a little bit related to that, where we’re looking at different kinds of binary patterns on objects, except that we don’t have to make the object look different here. We actually can hide the pattern underneath the surface and make it part of the structure itself. Another sort of related area would be RFID [radio-frequency identification]. Typically with RFID you need some kind of little circuit embedded in the object, along with an antenna, you know, which requires its own fabrication considerations and manufacturing. And here we don’t need those kinds of special circuitry and antennas. We actually just put the structure in the object, and we rely on the terahertz scanning to recover that. Another application would be embedding what’s called a gray code in the object, and that’s a particular binary pattern, which actually varies over the surface of the object. And when you recover the binary pattern, you then know exactly where you are in the binary pattern.

    There are limits to what you can do. We found that the approach works best when we had material and then interfacing with a void or an air pocket within the material, since chiefly what you have is the ability to sense changes in the index of refraction in the material. So the biggest and easiest way to create a change in the index of refraction is to go from the 3-D-printed material to air. And so that gives you a big jump in the index of refraction. That’s the part that—these interfaces reflect very nicely in the terahertz domain.

    Davey Alba: So is it possible to combine the different tags that you talked about into one object?

    Andy Wilson: Oh, absolutely. You could certainly construct an object where part of the object has a certain tag scheme and another part has a different tag scheme. One idea is to just print some kind of identifier into the object so that the camera can actually look at some part of the structure underneath the surface of the object and identify it very quickly.

    Davey Alba: So what exactly inspired you to do this work? Why 3-D printing?

    Andy Wilson: So this work was pursued by Karl Willis, who was an intern. In trying to figure out what to do, what kind of projects would interest both of us, we both came to this particular combination of his interests in 3-D printing and mine in sensing.

    Davey Alba: What sorts of challenges did you run into while you were developing this project? And can you expand on some of those, give us examples?

    Andy Wilson: Well, so there’s a couple of interesting challenges. One is just in understanding the limits of the technology. So we, Karl and I, put together a bunch of prototypes that just tried to test the limits of what you could sense with terahertz imaging. So that involved building very specialized little objects that looked at—varied the angle for example, that the beam would hit the objects. So we performed a number of different tests like this, which weren’t especially useful but then allowed us to perform some examination later, processing of the scans to determine that yes, you could get away with—you could see a surface that was up to, I think, about 15 degrees away from the camera. So that was the first thing, sort of establishing the performance of the device. And then that led us into designing the actual patterns themselves, starting to figure out what kinds of structures you can at first fabricate with a 3-D printer, or a laser cutter, or other kinds of digital fabrication techniques. And then in concert with that, to be able to write computer programs that can efficiently and reliably recover those patterns. So that was definitely one of the more challenging aspects of the work.

    Davey Alba: So this technology kind of lends itself—actually this was one of our first thoughts—to sci-fi sort of spying applications, passing secret messages, using objects where you embed these messages in these seemingly innocent-looking objects. Can you say anything to that?

    Andy Wilson: Well the thing of it is, it has to—it’s a little tricky because that message has to be there at the time the object is created. You can’t just sort of tuck it into an existing object. I’m really reminded, now that I think about it, of some of the stuff that Craig Venter’s company is doing where they, you know, assembling DNA strings and then putting a copyright message in there or encoding other kinds of data into DNA. I think that’s the kind of thing you can do kind of invisibly, I guess. Is that sci-fi? It seems to me like all this stuff is like, you know, not too far off.

    Davey Alba: Great. Thanks so much for your time, Andy.

    Andy Wilson: Thanks! Thank you so much.

    Davey Alba: We’ve been talking to Andy Wilson from Microsoft Research about the InfraStructs project. For IEEE Spectrum, I’m Davey Alba.

    The Conversation (0)

    Trending Stories

    The most-read stories on IEEE Spectrum right now

    History of TechnologyMagazineFeatureTelecommunications

    In 1844, Chess Was Already Online

    RoboticsNews

    Video Friday: Musculoskeletal Robot Dog

    History of TechnologyMagazineFeatureComputing

    The Untold History of the RESISTORS

    RoboticsHumanoid RobotsVideo

    Unitree Demos New $16k Robot

    Unitree's G1 robot is one of the cheapest—if not the cheapest—humanoid around

    IEEE Spectrum

    IEEE Spectrum is an award-winning technology magazine and the flagship publication of the IEEE, the world’s largest professional organization devoted to engineering and the applied sciences.

    30 Aug 2024
    Unitree Demos New $16k Robotplay icon

    IEEE Spectrum

    humanoid robotsunitreerobotics

    At ICRA 2024, Spectrum editor Evan Ackerman sat down with Unitree founder and CEO Xingxing Wang and Tony Yang, VP of Business Development, to talk about the company’s newest humanoid, the G1 model.

    Smaller, more flexible, and elegant, the G1 robot is designed for general use in service and industry, and is one of the cheapest—if not the cheapest—of a new wave of advanced AI humanoid robots.

    DIYVideo

    DIY: Classic 555 Timer Kit

    Follow along as we build and test one of our favorite kits of all time, the Discrete 555 Timer

    Stephen Cass

    Stephen Cass is the special projects editor at IEEE Spectrum. He currently helms Spectrum's Hands On column, and is also responsible for interactive projects such as the Top Programming Languages app. He has a bachelor's degree in experimental physics from Trinity College Dublin.

    23 Jul 2024
    DIY: Classic 555 Timer Kitplay icon

    IEEE Spectrum

    555hands onintegrated circuitstimerelectronics kitschip design

    Follow along as we build and test one of our favorite kits of all time, the Discrete 555 Timer! Build a huge version of one of the most iconic and surprisingly versatile integrated circuits of all time from transistor and resistors.

    The 555 chip has been used at one time or another by nearly every E.E. alive, and you can use it to detect pulses, make lights blink, debounce inputs, trigger alarms, and even make music (terrible music, but music nonetheless!). We first wrote up the kit in our Hands On column in Spectrum, and this is second version, which features some improvements over the original.

    Keep Reading ↓Show less
    RoboticsSpecial ReportsVideoEast Africa’s Big Bet On Drones

    360 Video: Zoom Over Zanzibar With Tanzania’s Drone Startups

    Come along for the ride as drones soar over the farms and schools of Tanzania

    Evan Ackerman

    Evan Ackerman is a senior editor at IEEE Spectrum. Since 2007, he has written over 6,000 articles on robotics and technology. He has a degree in Martian geology and is excellent at playing bagpipes.

    Michael Koziol

    Michael Koziol is the news manager at IEEE Spectrum. Previously, he was an associate editor covering telecommunications. He graduated from Seattle University with bachelor's degrees in English and Physics, and earned his master's degree in science journalism from New York University.

    Eliza Strickland

    Eliza Strickland is a senior editor at IEEE Spectrum, where she covers AI, biomedical engineering, and other topics. She holds a master’s degree in journalism from Columbia University.

    09 May 2019
    6:56
    360 Video: Zoom Over Zanzibar With Tanzania’s Drone Startupsplay icon
    Photo: IEEE Spectrum
    type:videodronestanzaniaeast africa dronesgadgetsafricamappingdelivery drones360 video

    With 360-degree video, IEEE Spectrum puts you aboard drones that are flying high above the Tanzanian landscape: You’ll ride along as drones soar above farms, towns, and the blue expanse of Lake Victoria. You’ll also meet the local entrepreneurs who are creating a new industry, finding applications for their drones in land surveying and delivery. And you’ll get a close-up view from a bamboo grove as a drone pilot named Bornlove builds a flying machine from bamboo and other materials.

    You can follow the action in a 360-degree video in three ways: 1) Watch on your computer, using your mouse to click and drag on the video; 2) watch on your phone, moving the phone around to change your view; or 3) watch on a VR headset for the full immersive experience.

    Keep Reading ↓Show less
    About IEEEContact & SupportAccessibilityNondiscrimination PolicyTermsIEEE Privacy PolicyCookie PreferencesAd Privacy Options
    © Copyright 2025 IEEE — All rights reserved. A public charity, IEEE is the world's largest technical professional organization dedicated to advancing technology for the benefit of humanity.