RoMeLa's Newest Robot Is a Curiously Symmetrical Dynamic Quadruped

With four legs but no back or front, ALPHRED 2 can run, jump, and punch through boards in any direction

3 min read
ALPHRED 2 can run, jump, and punch through boards in any direction
ALPHRED 2 can use its four symmetrical limbs to walk and run like a quadruped, or it can use one of its limbs as an arm for pushing buttons.
Photo: RoMeLa

A few years ago, we wrote about NABiRoS, a bipedal robot from Dennis Hong’s Robotics & Mechanisms Laboratory (RoMeLa) at UCLA. Unlike pretty much any other biped we’d ever seen, NABiRoS had a unique kinematic configuration that had it using its two legs to walk sideways, which offered some surprising advantages.

As it turns out, bipeds aren’t the only robots that can potentially benefit from a bit of a kinematic rethink. RoMeLa has redesigned quadrupedal robots too—rather than model them after a quadrupedal animal like a dog or a horse, RoMeLa’s ALPHRED robots use four legs arranged symmetrically around the body of the robot, allowing it to walk, run, hop, and jump, as well as manipulate and carry objects, karate chop through boards, and even roller skate on its butt. This robot can do it all.

Impressive, right? This is ALPHRED 2, and its predecessor, the original ALPHRED, was introduced at IROS 2018. Both ALPHREDs are axisymmetric about the vertical axis, meaning that they don’t have a front or a back and are perfectly happy to walk in any direction you like. Traditional quadrupeds like Spot or Laikago can also move sideways and backwards, but their leg arrangement makes them more efficient at moving in one particular direction, and also results in some curious compromises like a preference for going down stairs backwards. ANYmal is a bit more flexible in that it can reverse its knees, but it’s still got that traditional quadrupedal two-by-two configuration. 

ALPHRED 2’s four symmetrical limbs can be used for a whole bunch of stuff. It can do quadrupedal walking and running, and it’s able to reach stable speeds of up to 1.5 m/s. If you want bipedal walking, it can do that NABiRoS-style, although it’s still a bit fragile at the moment. Using two legs for walking leaves two legs free, and those legs can turn into arms. A tripedal compromise configuration, with three legs and one arm, is more stable and allows the robot to do things like push buttons, open doors, and destroy property. And thanks to passive wheels under its body, ALPHRED 2 can use its limbs to quickly and efficiently skate around:

The impressive performance of the robot comes courtesy of a custom actuator that RoMeLa designed specifically for dynamic legged locomotion. They call it BEAR, or Back-Drivable Electromechanical Actuator for Robots. These are optionally liquid-cooled motors capable of proprioceptive sensing, consisting of a DC motor, a single stage 10:1 planetary gearbox, and channels through the back of the housing that coolant can be pumped through. The actuators have a peak torque of 32 Nm, and a continuous torque of about 8 Nm with passive air cooling. With liquid cooling, the continuous torque jumps to about 21 Nm. And in the videos above, ALPHRED 2 isn’t even running the liquid cooling system, suggesting that it’s capable of much higher sustained performance.

RoMeLa's ALPHRED 2 robotUsing two legs for walking leaves two legs free, and those legs can turn into arms.Photo: RoMeLa

RoMeLa has produced a bunch of very creative robots, and we appreciate that they also seem to produce a bunch of very creative demos showing why their unusual approaches are in fact (at least in some specific cases) somewhat practical. With the recent interest in highly dynamic robots that can be reliably useful in environments infested with humans, we can’t wait to see what kinds of exciting tricks the next (presumably liquid-cooled) version will be able to do.

[ RoMeLa ]

The Conversation (0)

How Robots Can Help Us Act and Feel Younger

Toyota’s Gill Pratt on enhancing independence in old age

10 min read
An illustration of a woman making a salad with robotic arms around her holding vegetables and other salad ingredients.
Dan Page

By 2050, the global population aged 65 or more will be nearly double what it is today. The number of people over the age of 80 will triple, approaching half a billion. Supporting an aging population is a worldwide concern, but this demographic shift is especially pronounced in Japan, where more than a third of Japanese will be 65 or older by midcentury.

Toyota Research Institute (TRI), which was established by Toyota Motor Corp. in 2015 to explore autonomous cars, robotics, and “human amplification technologies,” has also been focusing a significant portion of its research on ways to help older people maintain their health, happiness, and independence as long as possible. While an important goal in itself, improving self-sufficiency for the elderly also reduces the amount of support they need from society more broadly. And without technological help, sustaining this population in an effective and dignified manner will grow increasingly difficult—first in Japan, but globally soon after.

Keep Reading ↓Show less