Robots Learn to Take Pictures Better Than You

Thanks to some basic rules and a large database of both good and bad pictures, NAO is now a "professional photographer"

2 min read
Robots Learn to Take Pictures Better Than You

Humans would like to believe that artistry and creativity can't be distilled down into a set of rules that a robot can follow, but in some cases, it's possible to at least tentatively define some things that work and some things that don't. Raghudeep Gadde, a master's student in computer science at IIIT Hyderabad, in India, has been teaching his Nao robot some general photography rules that he says enable the robot to "capture professional photographs that are in accord with human professional photography."

Essentially, they've simply taught their robot to do its best to obey both the rule of thirds and the golden ratio when taking pictures with its built-in camera. The rule of thirds states that it's best to compose a picture such that if you chop the scene up into nine equal squares (i.e. into thirds both vertically and horizontally), what you're focusing on should be located at an intersection between squares. And the golden ratio basically says that the best place for a horizon is the line that you get when you separate your scene into two rectangles, with one being 1.62 times the size of the other. This all sounds like math, right? And robots like math.

These aren't hard-and-fast rules, of course, and brilliant and creative photographers will often completely ignore them. But we don't need robots to be brilliant and creative photographers (and if they were, it would be serious blow to our egos). It would just be helpful if they were decent at it, which is what this algorithm is supposed to do, although there's certainly no substitute for a human's ability to spot interesting things to take pictures of. That said, I imagine that it would be possible to program a robot to look for scenes with high amounts of color, contrast, or patterns, which (in a very general sense) is what we look for when taking pictures.

The other part to all this is that Nao has some idea of what constitutes a "good" picture from a more abstract, human perspective. Using an online photo contest where 60,000 pictures were ranked by humans, Nao can give the images it takes a quality ranking, and if that ranking falls below a certain threshold, the robot will reposition itself and try to take a better picture.

If this method works out, there are all kinds of applications (beyond just robots) that it could be adapted to. For example, Google image searches could include a new filter that returns only images that don't completely suck. Or maybe the next generation of digital cameras will be able to explain exactly why that picture you just took was absolutely terrible, and then offer suggestions on how to do better next time.

UPDATE: Raghudeep sent us some example images to show how Nao autonomously reframes a photo after analyzing an initial shot. Note that the robot has a low-resolution camera that takes only 640 x 480 pictures.

Example 1, initial shot

Example 1, reframed shot

Example 2, initial shot

Example 2, reframed shot

Example 3, initial shot

Example 3, reframed shot

[ Raghudeep Gadde ] via [ New Scientist ]

The Conversation (0)

The Bionic-Hand Arms Race

The prosthetics industry is too focused on high-tech limbs that are complicated, costly, and often impractical

12 min read
A photograph of a young woman with brown eyes and neck length hair dyed rose gold sits at a white table. In one hand she holds a carbon fiber robotic arm and hand. Her other arm ends near her elbow. Her short sleeve shirt has a pattern on it of illustrated hands.

The author, Britt Young, holding her Ottobock bebionic bionic arm.

Gabriela Hasbun. Makeup: Maria Nguyen for MAC cosmetics; Hair: Joan Laqui for Living Proof

In Jules Verne’s 1865 novel From the Earth to the Moon, members of the fictitious Baltimore Gun Club, all disabled Civil War veterans, restlessly search for a new enemy to conquer. They had spent the war innovating new, deadlier weaponry. By the war’s end, with “not quite one arm between four persons, and exactly two legs between six,” these self-taught amputee-weaponsmiths decide to repurpose their skills toward a new projectile: a rocket ship.

The story of the Baltimore Gun Club propelling themselves to the moon is about the extraordinary masculine power of the veteran, who doesn’t simply “overcome” his disability; he derives power and ambition from it. Their “crutches, wooden legs, artificial arms, steel hooks, caoutchouc [rubber] jaws, silver craniums [and] platinum noses” don’t play leading roles in their personalities—they are merely tools on their bodies. These piecemeal men are unlikely crusaders of invention with an even more unlikely mission. And yet who better to design the next great leap in technology than men remade by technology themselves?

Keep Reading ↓Show less