Robotic Rat Climbs, Crawls, and Turns on a Dime

Its creators hope it could be useful in disaster zones and for monitoring pipelines

3 min read
A furless robot rat, showing white plastic limbs and tail. White plastic also forms the heads and body segments, encasing electronic components.
Qing Shi

There has been much interest in designing robots that are agile enough to navigate through tight spaces. This ability could be useful in assessing disaster zones or pipelines, for example.

But, choosing the right design is crucial to success in such applications.

“Though legged robots are very promising for use in real-world applications, it is still challenging for them to operate in narrow spaces,” explains Qing Shi, a Professor at the Beijing Institute of Technology. “Large quadruped robots cannot enter narrow spaces, while micro quadruped robots can enter the narrow spaces but face difficulty in performing tasks owing to their limited ability to carry heavy loads.”

Instead of designing a large four-legged robot or microrobots, Shi and his colleagues decided to create a robot inspired by an animal highly adept at squeezing through tight spaces and turning on a dime: the rat.

In a study published on 7 April inIEEE Transactions on Robotics, they demonstrate how their new rat-inspired robot, SQuRo (small-sized Quadruped Robotic Rat), can walk, crawl, and climb over objects, and turn sharply with unprecedented agility. What’s more, SQuRo can recover from falls, like its organic inspiration.

Shi and his colleagues first used X-Rays of real rats to better understand the animal’s anatomy—especially its joints. They then designed SQuRO to have a similar structure, movement patterns, and degrees of freedom (DOF) as the rodents they studied. This includes two DOFs in each limb, the waist, and the head; the setup allows the robot to replicate a real rat's flexible spine movement.

SQuRo was then put to the test through a series of experiments, first exploring its ability to perform four key motions: crouching-to-standing, walking, turning, and crawling. The turning results were especially impressive, with SQuRo demonstrating it can turn on a very tight radius of less than half its own body length. “Notably, the turning radius is much smaller than other robots, which guarantees the agile movement in narrow space,” says Shi.

Next, the researchers tested SQuRo in more challenging scenarios. In one situation they devised, the robotic rodent had to make its way through a narrow, irregular passage that mimicked a cave environment. SQuRo successfully navigated the passageway. In another scenario, SQuRo successfully toted a 200-gram weight (representing 91 percent of its own weight) across a field that included inclines of up to 20 degrees.

A Robotic Rat that Does It Allwww.youtube.com

Importantly, any robot that is navigating disaster zones, pipelines, or other challenging environments will need to be able to climb over any obstacles it encounters. With that in mind, the researchers also designed SQuRo so that it can lean back on its haunches and put its forelimbs in position to climb over an object, similar to what real rats do. In an experiment, they show that SQuRo can overcome obstacles 30 millimeters high (which is 33 percent of its own height height) with a success rate of 70 percent. In a final experiment, SQuRo was able to right itself after falling on its side.

“To the best of our knowledge, SQuRo is the first small-sized quadruped robot of this scale that is capable of performing five motion modes, which includes crouching-to-standing, walking, crawling, turning, and fall recovery,” says Shi.

He says the team is interested in commercializing the robot and plans to improve its agility via closed-loop control and in-depth dynamic analysis. “Moreover, we will install more sensors on the robot to conduct field tests in narrow unstructured pipelines,” says Shi. “We are confident that SQuRo has the potential to be used in pipeline [fault] detection after being equipped with cameras and other detection sensors.”

The Conversation (1)
Yulai Zhang21 Apr, 2022
GSM

What a cute robot! LOL.

It’s like a real rat. Besides applying on disaster zones, I’d like to adopt one in my apartment.

The Bionic-Hand Arms Race

The prosthetics industry is too focused on high-tech limbs that are complicated, costly, and often impractical

12 min read
Horizontal
A photograph of a young woman with brown eyes and neck length hair dyed rose gold sits at a white table. In one hand she holds a carbon fiber robotic arm and hand. Her other arm ends near her elbow. Her short sleeve shirt has a pattern on it of illustrated hands.

The author, Britt Young, holding her Ottobock bebionic bionic arm.

Gabriela Hasbun. Makeup: Maria Nguyen for MAC cosmetics; Hair: Joan Laqui for Living Proof
DarkGray

In Jules Verne’s 1865 novel From the Earth to the Moon, members of the fictitious Baltimore Gun Club, all disabled Civil War veterans, restlessly search for a new enemy to conquer. They had spent the war innovating new, deadlier weaponry. By the war’s end, with “not quite one arm between four persons, and exactly two legs between six,” these self-taught amputee-weaponsmiths decide to repurpose their skills toward a new projectile: a rocket ship.

The story of the Baltimore Gun Club propelling themselves to the moon is about the extraordinary masculine power of the veteran, who doesn’t simply “overcome” his disability; he derives power and ambition from it. Their “crutches, wooden legs, artificial arms, steel hooks, caoutchouc [rubber] jaws, silver craniums [and] platinum noses” don’t play leading roles in their personalities—they are merely tools on their bodies. These piecemeal men are unlikely crusaders of invention with an even more unlikely mission. And yet who better to design the next great leap in technology than men remade by technology themselves?

Keep Reading ↓Show less