UCSB and Disney Find Out How High a Robot Can Possibly Jump

This highly optimized jumping robot launches a staggering 30 meters into the air

5 min read
Two squashed black loops overlap at ninety degrees to each other. Elastic ties criss cross the loops and attach to a central spindle. Atop the spindle is a blue cone shape and some electronics.

Over the last decade or so, we’ve seen an enormous variety of jumping robots. With a few exceptions, these robots look to biology to inspire their design and functionality. This makes sense, because the natural world is full of jumping animals that are absolutely incredible, and matching their capabilities with robots seems like a reasonable thing to aspire to—with creatures such as ants, frogs, birds, and galagos, robots have tried (and occasionally succeeded in some specific ways) to mimic their motions.

The few exceptions to this bio-inspired approach have included robots that leverage things like compressed gas and even explosives to jump in ways that animals cannot. The performance of these robots is very impressive, at least partially because their jumping techniques don’t get all wrapped up in biological models that tend to be influenced by nonjumping things, like versatility.

For a group of roboticists from the University of California, Santa Barbara, and Disney Research, this led to a simple question: If you were to build a robot that focused exclusively on jumping as high as possible, how high could it jump? And in a paper published today in Nature, they answer that question with a robot that can jump 33 meters high, which reaches right about eyeball level on the Statue of Liberty.


These videos are unfortunately not all that great, but here’s a decent one of the jumping robot (which the researchers creatively refer to as “our jumper”) launching itself, landing, self-righting, and then launching again.

And here’s a slow-motion close-up of the jump itself.

The jumper is 30 centimeters tall and weighs 30 grams, which is relatively heavy for a robot like this. It’s made almost entirely of carbon fiber bows that act as springs, along with rubber bands that store energy in tension. The center bit of the robot includes a motor, some batteries, and a latching mechanism attached to a string that connects the top of the robot to the bottom. To prepare for a jump, the robot starts spinning its motor, which over the course of 2 minutes winds up the string, squishing the robot down and gradually storing up a kind of ridiculous amount of energy. Once the string is almost completely wound up, one additional tug from the motor trips the latching mechanism, which lets go of the string and releases all of the energy in approximately 9 milliseconds, over which time the robot accelerates from zero to 28 meters per second. All-in, the robot has a specific energy of over 1,000 joules per kilogram, which is enough to propel it about an order of magnitude higher than even the best biological jumpers, and easily triples the height of any other jumping robot in existence.

Photo showing the trajectory of the jumping robot reaching 30m high with a human for scale

The reason that this robot can jump as high as it does is because it relies on a clever bit of engineering that you won’t find anywhere (well, almost anywhere) in biology: a rotary motor. With a rotary motor and some gears attached to a spring, you can use a relatively low amount of power over a relatively long period of time to store lots and lots of energy as the motor spins. Animals don’t have access to rotary motors, so while they do have access to springs (tendons), the amount that those springs can be charged up for jumping is limited by how much you can do with the single power stroke that you get from a muscle. The upshot here is that the best biological jumpers, like the galago, simply have the biggest jumping muscles relative to their body mass. This is fine, but it’s a pretty significant limitation to how high animals can possibly jump.

While many other robots (stretching back at least a decade) have combined rotary motors and springs for jumping, the key insight that led to this Nature paper is the understanding that the best way to engineer an optimal jumping robot is by completely inverting the biology: Instead of getting bigger jumps through bigger motors, you instead minimize the motor while using as many tricks as possible to go all in on the spring. The researchers were able to model the ratio of muscle to tendon for biological jumpers, and found that the best performance comes from a muscle that’s about 30 times the mass of the tendon. But for an engineered jumper, this paper shows that you actually want to invert that mass ratio, and this jumping robot has a spring that’s 1.2 times the mass of the motor. “We were too tied to the animal model,” coauthor Morgan Pope of Disney Research told IEEE Spectrum. “So we’ve been jumping a few meters high when we should be jumping tens of meters high.”


Five frames show the robot\u2019s loops contracting and becoming vertically elongated, until it leaves the ground. A series of high speed images showing the robot releasing the tension in its springs and jumping

“Seeing our robot jump for the first time was magical,” first author Elliot Hawkes from UC Santa Barbara told us. “We started with a design much more like a pogo stick before coming to a bow design, then to the hybrid spring design with the rubber bands and bows together. Countless hours went into troubleshooting all kinds of challenging mechanical problems, from gearbox teeth shearing off to hinges breaking to carbon-fiber springs exploding. Every new iteration was just as exciting—the most recent one that jumps over 30 meters just blows your mind when you see it take off in person. It’s so much energy in such a small device!”

Getting the robot to jump even higher (since Statue of Liberty eyeball-height obviously just isn’t good enough) will likely involve using a spring that’s even springier to maximize the amount of energy that the robot can store without increasing its mass. “We have pushed the energy storage pretty far with our hybrid tension-compression spring,” Hawkes says. “But I believe there could be spring designs that could push this even further. We’re at around 2,000 joules per kilogram right now.”

It’s temping to fixate on the bonkers jump height of this robot and wonder why we don’t toss all those other bio-inspired robots out the window, but it’s important to understand that this thing is very much a unitasker in a way that animals (and the robots built with animals in mind) are not. “We have made an incredibly specialized device that does one thing very well,” says Hawkes. “It jumps very high once in a while. Biological jumpers do many other things way better, and are way more robust.”

A rendering showing the robot launching on the surface of the moon

With that in mind, it’s true that even the current version of this jumping robot can self-right, jump repetitively, and carry a small payload, like a camera. The researchers suggest that this combination of mobility and efficiency might make it ideal for exploring space, where jumping can get you a lot farther. On the moon, for example, this robot would be able to cover half a kilometer per jump, thanks to lower gravity and no atmospheric drag. “The application we are currently most excited about is space exploration,” Hawkes tells us. “The moon is a truly ideal location for jumping, which opens up new possibilities for exploration because it could overcome challenging terrain. For instance, the robot could hop onto the side of an inaccessible cliff or leap into the bottom of a crater, take samples, and return to a wheeled rover.” Hawkes says that he and his team are currently working with NASA to develop this system with the goal of launching to the moon within the next five years.

“Engineered Jumpers Overcome Biological Limits Via Work Multiplication,” by Elliot W. Hawkes, Charles Xiao, Richard-Alexandre Peloquin, Christopher Keeley, Matthew R. Begley, Morgan T. Pope, and Günter Niemeyer from UC Santa Barbara, Disney Research, and Caltech, appears this week in Nature.
The Conversation (0)

How the U.S. Army Is Turning Robots Into Team Players

Engineers battle the limits of deep learning for battlefield bots

11 min read
Robot with threads near a fallen branch

RoMan, the Army Research Laboratory's robotic manipulator, considers the best way to grasp and move a tree branch at the Adelphi Laboratory Center, in Maryland.

Evan Ackerman
LightGreen

“I should probably not be standing this close," I think to myself, as the robot slowly approaches a large tree branch on the floor in front of me. It's not the size of the branch that makes me nervous—it's that the robot is operating autonomously, and that while I know what it's supposed to do, I'm not entirely sure what it will do. If everything works the way the roboticists at the U.S. Army Research Laboratory (ARL) in Adelphi, Md., expect, the robot will identify the branch, grasp it, and drag it out of the way. These folks know what they're doing, but I've spent enough time around robots that I take a small step backwards anyway.

This article is part of our special report on AI, “The Great AI Reckoning.”

The robot, named RoMan, for Robotic Manipulator, is about the size of a large lawn mower, with a tracked base that helps it handle most kinds of terrain. At the front, it has a squat torso equipped with cameras and depth sensors, as well as a pair of arms that were harvested from a prototype disaster-response robot originally developed at NASA's Jet Propulsion Laboratory for a DARPA robotics competition. RoMan's job today is roadway clearing, a multistep task that ARL wants the robot to complete as autonomously as possible. Instead of instructing the robot to grasp specific objects in specific ways and move them to specific places, the operators tell RoMan to "go clear a path." It's then up to the robot to make all the decisions necessary to achieve that objective.

Keep Reading ↓ Show less