Q&A: Paul G. Richards, Nuclear Arms Seismologist

When North Korea detonated a nuclear device, he helped to measure it

6 min read

Paul G. Richards is the Mellon Professor of the Natural Sciences at Lamont-Doherty Earth Observatory of Columbia University, in Palisades, N.Y. For the last twenty-plus years, his work has focused on the use of seismological methods to study nuclear weapon test explosions and their implications in both the scientific and political arenas. He has served as an advisor on nuclear arms control at the U.S. Department of State, a visiting scientist at the Lawrence Livermore and the Los Alamos national laboratories, a technical expert to the Comprehensive Nuclear-Test-Ban Treaty Organization, and a scientific panelist for the National Academy of Sciences' report "Technical Issues Related to the Comprehensive Nuclear Test-Ban Treaty," among many other assignments in the field of nuclear testing detection and measurement.

From 2000 to 2003, he led an applied research project to improve the accuracy with which treaty monitoring organizations routinely locate seismic events, particularly in Eastern Asia. He describes the work of event location as the "last corner of seismology that is still dominated by methods developed during the era of analog recording." He says that traditional methodology has been greatly enhanced by the practice of measuring comparable seismic events in the same locale simultaneously and "locating each one relative to its neighbors, preferably using waveform cross-correlation to measure relative arrival times."

Keep Reading ↓Show less

This article is for IEEE members only. Join IEEE to access our full archive.

Join the world’s largest professional organization devoted to engineering and applied sciences and get access to all of Spectrum’s articles, podcasts, and special reports. Learn more →

If you're already an IEEE member, please sign in to continue reading.

Membership includes:

  • Get unlimited access to IEEE Spectrum content
  • Follow your favorite topics to create a personalized feed of IEEE Spectrum content
  • Save Spectrum articles to read later
  • Network with other technology professionals
  • Establish a professional profile
  • Create a group to share and collaborate on projects
  • Discover IEEE events and activities
  • Join and participate in discussions
This photograph shows a car with the words “We Drive Solar” on the door, connected to a charging station. A windmill can be seen in the background.

The Dutch city of Utrecht is embracing vehicle-to-grid technology, an example of which is shown here—an EV connected to a bidirectional charger. The historic Rijn en Zon windmill provides a fitting background for this scene.

We Drive Solar

Hundreds of charging stations for electric vehicles dot Utrecht’s urban landscape in the Netherlands like little electric mushrooms. Unlike those you may have grown accustomed to seeing, many of these stations don’t just charge electric cars—they can also send power from vehicle batteries to the local utility grid for use by homes and businesses.

Debates over the feasibility and value of such vehicle-to-grid technology go back decades. Those arguments are not yet settled. But big automakers like Volkswagen, Nissan, and Hyundai have moved to produce the kinds of cars that can use such bidirectional chargers—alongside similar vehicle-to-home technology, whereby your car can power your house, say, during a blackout, as promoted by Ford with its new F-150 Lightning. Given the rapid uptake of electric vehicles, many people are thinking hard about how to make the best use of all that rolling battery power.

Keep Reading ↓Show less