Plotting a Moore’s Law for Flexible Electronics

A five-year project at Imec aims to make big boosts in the density of thin-film transistor circuitry

3 min read
Photo: IMEC
Near Field Communicator: There are 1,700 transistors on the flexible chip in this NFC transmitter.
Photo: IMEC

At a meeting in midtown Manhattan, Kris Myny picks up what looks like an ordinary paper business card and, with little fanfare, holds it to his smartphone. The details of the card appear almost immediately on the screen inside a custom app.

It’s a simple demonstration, but Myny thinks it heralds an exciting future for flexible circuitry. In January, he began a five-year project at the nanoelectronics research institute Imec in Leuven, Belgium, to demonstrate that thin-film electronics has significant potential outside the realm of display electronics. In fact, he hopes that the project, funded with a €1.5 million grant from the European Research Council (ERC), could demonstrate that there is a path for the mass production of denser and denser flexible circuits—in other words, a Moore’s Law for bendable ICs.

Keep Reading ↓Show less

This article is for IEEE members only. Join IEEE to access our full archive.

Join the world’s largest professional organization devoted to engineering and applied sciences and get access to all of Spectrum’s articles, podcasts, and special reports. Learn more →

If you're already an IEEE member, please sign in to continue reading.

Membership includes:

  • Get unlimited access to IEEE Spectrum content
  • Follow your favorite topics to create a personalized feed of IEEE Spectrum content
  • Save Spectrum articles to read later
  • Network with other technology professionals
  • Establish a professional profile
  • Create a group to share and collaborate on projects
  • Discover IEEE events and activities
  • Join and participate in discussions

Two Startups Are Bringing Fiber to the Processor

Avicena’s blue microLEDs are the dark horse in a race with Ayar Labs’ laser-based system

5 min read
Diffuse blue light shines from a patterned surface through a ring. A blue cable leads away from it.

Avicena’s microLED chiplets could one day link all the CPUs in a computer cluster together.

Avicena

If a CPU in Seoul sends a byte of data to a processor in Prague, the information covers most of the distance as light, zipping along with no resistance. But put both those processors on the same motherboard, and they’ll need to communicate over energy-sapping copper, which slow the communication speeds possible within computers. Two Silicon Valley startups, Avicena and Ayar Labs, are doing something about that longstanding limit. If they succeed in their attempts to finally bring optical fiber all the way to the processor, it might not just accelerate computing—it might also remake it.

Both companies are developing fiber-connected chiplets, small chips meant to share a high-bandwidth connection with CPUs and other data-hungry silicon in a shared package. They are each ramping up production in 2023, though it may be a couple of years before we see a computer on the market with either product.

Keep Reading ↓Show less