Nanoparticle Both Kills Cancer Cells and Helps Image the Killing Process

“Theranostic” nanoparticle is first to allow the fluorescent imaging of a drug inside a cancer cell

2 min read
Nanoparticle Both Kills Cancer Cells and Helps Image the Killing Process
Although real cancer killing nanoparticles look nothing like the fanciful robots pictured here, they're rapidly accumulating new capabilities.
Illustration: Guillermo Lobo/iStockphoto

The therapeutic capabilities of metallic nanoparticles continue to improve, especially for cancer treatment. Along with their growing therapeutic abilities, they are also piling up diagnostic capabilities as well, like their recent use in enabling iPod drug testing.

Now, thanks to researchers from the University of New South Wales in Australia, metallic nanoparticles have been used to both treat cancer and observe the treatment. This latest development is part of the emerging field of so-called “theranostic” nanoparticles in which the nanoparticle is both a therapeutic and a diagnostic tool.

In a first, the Australian researchers, who published their work in the journal ACS Nano ("Using Fluorescence Lifetime Imaging Microscopy to Monitor Theranostic Nanoparticle Uptake and Intracellular Doxorubicin Release"), used a fluorescence imaging technique to see the release of a drug inside lung cancer cells.

“Usually, the drug release is determined using model experiments on the lab bench, but not in the cells,” said Professor Cyrille Boyer from the UNSW School of Chemical Engineering in a press release. “This is significant as it allows us to determine the kinetic movement of drug release in a true biological environment.”

The researchers were able to deliver the drug and watch it enter the cancer cells by using iron oxide nanoparticles that each had a polymer outer shell. The polymer shells were built so that they could attach to the drug doxorubicin (DOX) and then release the DOX in an acidic environment—inside the cancer cell. The iron oxide nanoparticles within the shell exploited the inherent fluorescence of the DOX by acting as contrast agents to make the fluorescence stand out.

Boyer expects that the iron oxide nanoparticles that they have developed will make it possible to adapt drug treatments to individual patients. “This is very important because it shows that bench chemistry is working inside the cells,” says Boyer. “The next step in the research is to move to in-vivo applications.”

The Conversation (0)

This CAD Program Can Design New Organisms

Genetic engineers have a powerful new tool to write and edit DNA code

11 min read
A photo showing machinery in a lab

Foundries such as the Edinburgh Genome Foundry assemble fragments of synthetic DNA and send them to labs for testing in cells.

Edinburgh Genome Foundry, University of Edinburgh

In the next decade, medical science may finally advance cures for some of the most complex diseases that plague humanity. Many diseases are caused by mutations in the human genome, which can either be inherited from our parents (such as in cystic fibrosis), or acquired during life, such as most types of cancer. For some of these conditions, medical researchers have identified the exact mutations that lead to disease; but in many more, they're still seeking answers. And without understanding the cause of a problem, it's pretty tough to find a cure.

We believe that a key enabling technology in this quest is a computer-aided design (CAD) program for genome editing, which our organization is launching this week at the Genome Project-write (GP-write) conference.

With this CAD program, medical researchers will be able to quickly design hundreds of different genomes with any combination of mutations and send the genetic code to a company that manufactures strings of DNA. Those fragments of synthesized DNA can then be sent to a foundry for assembly, and finally to a lab where the designed genomes can be tested in cells. Based on how the cells grow, researchers can use the CAD program to iterate with a new batch of redesigned genomes, sharing data for collaborative efforts. Enabling fast redesign of thousands of variants can only be achieved through automation; at that scale, researchers just might identify the combinations of mutations that are causing genetic diseases. This is the first critical R&D step toward finding cures.

Keep Reading ↓ Show less