The December 2022 issue of IEEE Spectrum is here!

Close bar

Leading Chipmakers Eye EUV Lithography to Save Moore’s Law

Intel, TSMC, and other chipmakers weigh extreme ultraviolet lithography, which may be ready by 2018

14 min read
Photo of a EUV scanner
Putting EUV to the Test: This EUV scanner (an ASML NXE:3300B) is used to print chip features at a SUNY Polytechnic Institute facility in Albany, N.Y. The EUV light needed to expose wafers is created near the bottom of the scanner, on the side visible in the foreground of this photograph. The far end of the machine is attached to a “track” that coats the wafers before exposure and processes them once they are done.
Photo: IBM Research

Even after you don a bunny suit and get deep inside Fab 8, it’s hard to get a sense of scale. Rows upon rows of tall machines, known as tools, dominate this US $12 billion GlobalFoundries facility, built amid forest north of Albany, N.Y. Carriers containing silicon wafers zip overhead along ceiling-mounted tracks, like tiny inverted roller coasters. If your timing is good, you’ll be standing by a tool when one of those carriers descends to join it, moving a wafer along to the next step in the three-month-long process it takes to turn a dinner-plate-size disk of raw silicon into chips that could be used inside smartphones, personal computers, and servers. That’s right: Begin making a microprocessor here on New Year’s Day and it may just be finished by the start of spring.

imgInside the Machine: To generate EUV, pulses of CO2 laser light are sent into a vessel (top and middle) where they collide with tiny tin droplets to create plasma. This partially assembled EUV scanner (bottom) at ASML’s headquarters in Veldhoven, Netherlands, is one of the company’s more recent models.Photos: ASML

Keep reading...Show less

This article is for IEEE members only. Join IEEE to access our full archive.

Join the world’s largest professional organization devoted to engineering and applied sciences and get access to all of Spectrum’s articles, podcasts, and special reports. Learn more →

If you're already an IEEE member, please sign in to continue reading.

Membership includes:

  • Get unlimited access to IEEE Spectrum content
  • Follow your favorite topics to create a personalized feed of IEEE Spectrum content
  • Save Spectrum articles to read later
  • Network with other technology professionals
  • Establish a professional profile
  • Create a group to share and collaborate on projects
  • Discover IEEE events and activities
  • Join and participate in discussions

Dialing Down a Quantum Compute Glitch by 100,000x

A low-key solution to qubits’ cosmic ray problem

3 min read
Conceptual computer artwork of electronic circuitry contained within spheres against beams of light, representing how data may be controlled and stored in a quantum computer.
Mehau Kulyk/Science Source

The kind of quantum computers that IBM, Google and Amazon are building suffer catastrophic errors roughly once every 10 seconds due to cosmic rays from outer space. Now a new study reveals a way to reduce this error rate by nearly a half-million-fold to less than once per month.

Quantum computers theoretically can find answers to problems no regular computer might ever hope to solve. Their key ingredients, known as quantum bits, or qubits, are linked together by a quantum effect known as entanglement.

Keep Reading ↓Show less
{"imageShortcodeIds":[]}

Deep Learning Gets a Boost From New Reconfigurable Processor

The ReAAP processor allows AI to be faster, more efficient

2 min read
different colored beams of light shooting up
iStock

This article is part of our exclusive IEEE Journal Watch series in partnership with IEEE Xplore.

Deep learning is a critical computing approach that is pushing the boundaries of technology – crunching immense amounts of data and uncovering subtle patterns that humans could never discern on their own. But for optimal performance, deep learning algorithms need to be supported with the right software compiler and hardware combinations. In particular, reconfigurable processors, which allow for flexible use of hardware resources for computing as needed, are key.

Keep Reading ↓Show less

Fourth Generation Digitizers With Easy-to-Use API

Learn about the latest generation high-performance data acquisition boards from Teledyne

1 min read

In this webinar, we explain the design principles and operation of our fourth-generation digitizers with a focus on the application programming interface (API).

Register now for this free webinar!

Keep Reading ↓Show less