Close

Kurt Petersen, 2019 IEEE Medal of Honor Recipient, Is Mr. MEMS

An ink stain on the floor led to a lifetime of building micro devices and sensors and macro companies

12 min read
photo of Kurt Petersen
Photo: Peter Adams

It was 1975, and Kurt Petersen was a smart young researcher, fresh out of the Ph.D. program in electrical engineering at MIT and working in the optics group at IBM's Almaden, Calif., research center. And he was bored. Roaming the massive complex one day, he came across a huge black stain on the linoleum tiles of an otherwise nondescript hallway. That stain would change his life and the course of an entire industry.

In search of the source of the stain—he was that bored—Petersen walked into the nearest lab. The stain, he found out, came from an ink spill. The lab was developing inkjet printer nozzles by etching precise holes in silicon.

Keep Reading ↓ Show less

Stay ahead of the latest trends in technology. Become an IEEE member.

This article is for IEEE members only. Join the world’s largest professional organization devoted to engineering and applied sciences and get access to all of Spectrum’s articles, podcasts, and special reports. Learn more →

Membership includes:

  • Get unlimited access to IEEE Spectrum content
  • Follow your favorite topics to create a personalized feed of IEEE Spectrum content
  • Save Spectrum articles to read later
  • Network with other technology professionals
  • Establish a professional profile
  • Create a group to share and collaborate on projects
  • Discover IEEE events and activities
  • Join and participate in discussions

A Circuit to Boost Battery Life

Digital low-dropout voltage regulators will save time, money, and power

11 min read
Image of a battery held sideways by pliers on each side.
Edmon de Haro

YOU'VE PROBABLY PLAYED hundreds, maybe thousands, of videos on your smartphone. But have you ever thought about what happens when you press “play”?

The instant you touch that little triangle, many things happen at once. In microseconds, idle compute cores on your phone's processor spring to life. As they do so, their voltages and clock frequencies shoot up to ensure that the video decompresses and displays without delay. Meanwhile, other cores, running tasks in the background, throttle down. Charge surges into the active cores' millions of transistors and slows to a trickle in the newly idled ones.

Keep Reading ↓ Show less