Kilobots Are Cheap Enough to Swarm in the Thousands

What can you do with a $14 robot? Not much. What can you do with a thousand $14 robots? World domination

2 min read
Kilobots
Photo: Evan Ackerman/IEEE Spectrum

These are Kilobots. They're fairly simple little robots about the size of a quarter that can move around on vibrating legs, blink their lights, and communicate with each other. On an individual basis, this isn't particularly impressive, but Kilobots aren't designed to be used on an individual basis. Costing a mere $14 each and buildable in about five minutes, you don't just get yourself one single Kilobot. Or ten. Or a hundred. They're designed to swarm in the thousands, although the Harvard group that's working on them is starting out with a modest 25:

We've seen lots of examples of swarm robotics, but what we decide to call a "swarm" often isn't, really. There is (or should be, at any rate) a distinction between a group of robots cooperating on a task and a true swarm of robots, and for the purposes of this article, I'm going to arbitrarily assert that a group of robots turns into a swarm of robots when you can't easily count how many individual robots there are. So like, these swarming MAVs? Not really a swarm. Swarmanoid? Not a swarm yet. Swarm bots are getting closer. What definitely makes the cut are projects like RoboSwarm and FlyFire, which use anywhere from hundreds to thousands of small robots all at once.

There's a lot you can do with gigantic swarms of robots, but there are two big obstacles to deploying them: programming, and charging. If you can't figure out a way to do these things efficiently (i.e. not on an individual basis for each robot), it negates a big part of the swarm appeal. In the case of the Kilobots, they can all be programmed at once with an infrared controller, and to charge them, the bots can simply be sandwiched between two conductive surfaces. The fundamental idea here is that any interaction with a robot swarm has to be scalable, such that an increase in the number of robots in the swarm doesn't result in an increase in the amount of time it takes to interact with the swarm.

I should point out that the other big obstacle to robot swarm deployment is price, which is why kilobots are deliberately so cheap: at $14 each, a thousand robots is actually an achievable number with a modest grant, which is something that probably has not been possible before. Generally people who want to experiment with large swarms have had to be content with computer simulations, which is fine, but at some point you have to try things out in the real world (or as close as you can get in a lab), and Kilobots can make that happen.

The Self Organizing Systems Research Group at Harvard is planning to expand their Kilobot collective to 1024 robots, and then they'll teach the swarm to demonstrate behaviors like self-healing and collective transport. Better hide your kids. Also, for the record, I'm pretty sure it's "Kilobots" and not "kill-o-bots." But who really knows until it's too late, right?

[ Kilobots ] via [ Hack A Day ]

The Conversation (0)

How the U.S. Army Is Turning Robots Into Team Players

Engineers battle the limits of deep learning for battlefield bots

11 min read
Robot with threads near a fallen branch

RoMan, the Army Research Laboratory's robotic manipulator, considers the best way to grasp and move a tree branch at the Adelphi Laboratory Center, in Maryland.

Evan Ackerman
LightGreen

“I should probably not be standing this close," I think to myself, as the robot slowly approaches a large tree branch on the floor in front of me. It's not the size of the branch that makes me nervous—it's that the robot is operating autonomously, and that while I know what it's supposed to do, I'm not entirely sure what it will do. If everything works the way the roboticists at the U.S. Army Research Laboratory (ARL) in Adelphi, Md., expect, the robot will identify the branch, grasp it, and drag it out of the way. These folks know what they're doing, but I've spent enough time around robots that I take a small step backwards anyway.

This article is part of our special report on AI, “The Great AI Reckoning.”

The robot, named RoMan, for Robotic Manipulator, is about the size of a large lawn mower, with a tracked base that helps it handle most kinds of terrain. At the front, it has a squat torso equipped with cameras and depth sensors, as well as a pair of arms that were harvested from a prototype disaster-response robot originally developed at NASA's Jet Propulsion Laboratory for a DARPA robotics competition. RoMan's job today is roadway clearing, a multistep task that ARL wants the robot to complete as autonomously as possible. Instead of instructing the robot to grasp specific objects in specific ways and move them to specific places, the operators tell RoMan to "go clear a path." It's then up to the robot to make all the decisions necessary to achieve that objective.

Keep Reading ↓ Show less